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Recap: Supervised Learning

Definition: A supervised learning task consists of
* A set of input features Xi,...,Xn
* A set of target features Yi,..., Y«
* A set of training examples, for which both input and target features are given
* Aloss function for measuring the quality of predictions

The goal is to predict the values of the target features given the input features; i.e.,
learn a function h(x) that will map features X to a prediction of Y

 We want to predict new, unseen data well; this is called generalization

e (Can estimate generalization performance by reserving separate test examples



Recap: Loss runctions

* Aloss function gives a quantitative measure of a hypothesis's performance

* [here are many commonly-used |loss functions, each with its own properties
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Recap: Optimal Trivial Predictors
for Binary Data
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Optimal Trivial Predictor
Derivations
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Decision lrees

Decision trees are a simple approach to classification

Definition:
A decision tree Is a tree In which

 Every internal node is labelled with a condition (Boolean
function of an example)

* Every internal node has two children, one labelled true and
one labelled false

* Every leaf node Is labelled with a point estimate on the
target



Decision [rees Example

Example Author Thread Lenath Where Action
el kKnown new long home skips
e2 unknown new short  work | reads frue
el3 unknown followup long work skips
ed known followup  long home skips skips
ed KNnown new short home reads folse
eb Kknown followup long work skips
e/ unknown followup short work skips
e8 unknown new short work reads
e9 known followup long home skips
_ . true false
el0 Known new long work skips
e‘1 unknown followup short home sqps skips reads
el2 KNoOwn new long work skips
el13 known followup short home reads
-
eld KNown new short work reads
el5 KNnown new short home reads true false
el16 Known followup short work reads
el7 Known  new short home | reads skips reads with
e18 unknown new short work reads probability 0.82



Bullding Decision Irees

How should an agent choose a decision tree”
* Bias: which decision trees are preferable to others?
 Search: How can we search the space of decision trees”?
e Search space is prohibitively large

* |dea: Choose features to branch on one by one



Tree Construction Algorithm

learn_tree(Cs, Y, ES):
Input: conditions Cs; target feature Y; training examples Es

If stopping condition is true:
v := point_estimate(Y, Es)

Ie =v
return /
else:

select condition ¢ € Cs

true_examples = {e € Es | c(e) }

t; := learn_tree(Cs \ {c}, Y, true_examples)
false_examples = { e € Es | =c(e) }

to := learn_tree(Cs \ {c}, Y, false_examples)
T(e) :=if c(e) then t1 else 1o

return /



Tree Construction Algorithm

learn_tree(Cs, Y, ES):

Input

target feature Y; training examples Es

Tle) -

return /
else: /

select conditionc € Cs

true_examples = {e € Es | c(e) }

t; := learn_tree(Cs \ {c}, Y, true_examples)
false_examples = { e € Es | =c(e) }

to := learn_tree(Cs \ {c}, Y, false_examples)
T(e) :=if c(e) then t1 else 1o

return /

Unspecified



Stopping Criterion

* Question: When must the algorithm stop?
* No more conditions
* No more examples
o All examples have the same label

* Additional possible criteria:

 Minimum child size: Do not split a node if there would be too few examples in one of the
children (why?)

* Minimum number of examples: Do not split a node with too few examples (why?)

* |Improvement criteria: Do not split a node unless it improves some criterion sufficiently
(why?)

 Maximum depth: Do not split if the depth reaches a maximum (why?)



| eaf Point EStimates

* Question: \What point estimate should go on the leaves”
* Modal target value
 Median target value (unless categorical)
 Mean target value (unless categorical or ordinal)
* Distribution over target values

* Question: \What point estimate optimally classifies the leaf's
examples?



Split Conditions

* Question: \What should the set of conditions be”?
* Boolean features can be used directly
* Partition domain into subsets
* E.g., thresholds for ordered features

e One branch for each domain element



Choosing Split Conditions

* Question: \Which condition should be chosen to split on”
o Standard answer: myopically optimal condition

* [f this was the only split, which condition would result in
the best performance?




| Inear Regression

* Linear regression is the problem of fitting a linear function to
a set of training examples

* Both input and target features must be numeric

* Linear function of the input features:

Y¥(e) = wy + w, X;(e) + ... + w X (e)



Gradient Descent

* For some loss functions (e.g., sum of squares), linear regression
nas a closed-form solution

* [or others, we use gradient descent

e (Gradient descent is an iterative method to find the minimum
of a function.

* [For minimizing error:

W, 1= W, — na—wermr(E, W)



Gradient Descent Variations

* Incremental gradient descent: update each weight after
each example in turn

Ve, € E:w;i=w; — na—ermr({ej},w)
Wi

 Batched gradient descent: update each weight based on a batch
of examples

VE; :w; 1= w; — na—wermr(E-, w)
l

* Stochastic gradient descent: repeatedly choose example(s) at
random to update on



| iInear Classification

* For binary targets represented by {O0,1} and numeric input
features, we can use linear function to estimate the

probability of the class

* |ssue: we need to constrain the output to lie within [0, 1]

* |[nstead of outputting results of the function directly, send it

through an activation function f: R —

0,1] instead:

(e) = f( D w,-Xl(e))
=0



| ogistic Regression

* A very commonly used activation function is the sigmoid or
logistic function:

sigmoid(x) = 1
- e—x

e Linear classification with a logistic activation function is often
referred 1o as logistic regression



Non-Binary larget reatures

What if the target feature has k > 2 values”
1. Use Kk Iindicator variables
2. Learn each indicator variable separately

3. Normalize the predictions



| Inear Regression [rees

* [earning algorithms can be combined
* Example: Linear classification trees
* |earn a decision tree until stopping criterion

e |fthere are still features left In the leaf, learn a linear classifier on the
remaining features

 Example: Linear regression trees
* |[earn a decision tree with linear regression in the leaves

e Splitting criterion has to perform linear regression for each considered
split



Summary

e Decision trees:

e Split on a condition at each internal node

* Prediction on the leaves

 Simple, general; often a building block for other methods
* Linear Regression and Classification

* Fit alinear function to the input and target features

* Often trained by gradient descent

* For some loss functions, linear regression has a closed analytic form



