Linear Models

CMPUT 366: Intelligent Systems

P&M §7.3

Lecture Outline

- 1. Recap
- 2. Linear Decision Trees
- 3. Linear Regression

Recap: Supervised Learning

Definition: A supervised learning task consists of

- A set of **input features** X_1, \ldots, X_n
- A set of **target features** Y_1, \dots, Y_k
- A loss function for measuring the quality of predictions

The goal is to **predict** the values of the **target features** given the **input features**; i.e., **learn** a function h(x) that will map features X to a prediction of Y

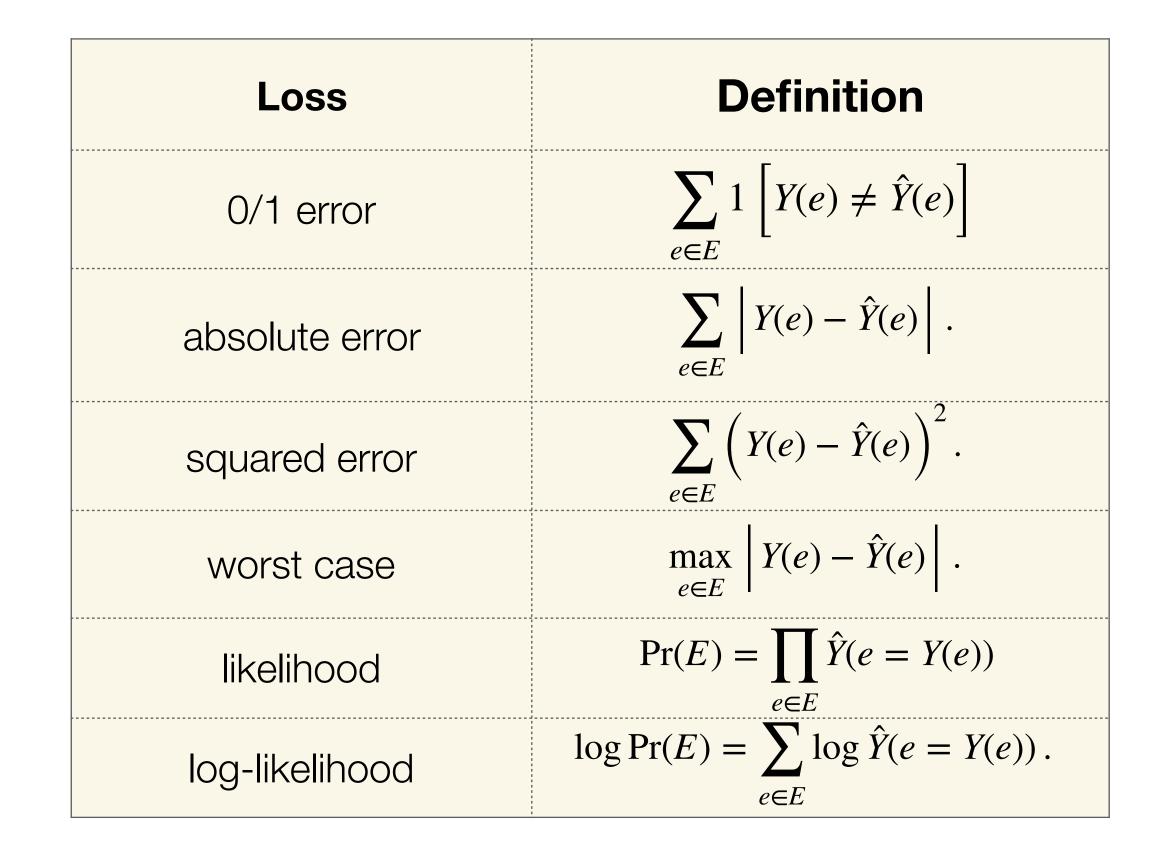
- lacksquare

• A set of **training examples**, for which both input and target features are given

We want to predict **new**, **unseen data** well; this is called **generalization**

• Can estimate generalization performance by reserving separate test examples

Recap: Loss Functions



• A loss function gives a quantitative measure of a hypothesis's performance

• There are many commonly-used loss functions, each with its own properties

Recap: Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a **binary** target
- n₀ negative examples
- n₁ positive examples
- What is the optimal single prediction?

Loss	Optimal Prediction			
0/1 error	0 if $n_0 > n_1$ else 1			
absolute error	0 if $n_0 > n_1$ else 1			
squared error	$\frac{n_1}{n_0 + n_1}$			
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$			
likelihood	$\frac{n_1}{n_0 + n_1}$			
log-likelihood	$\frac{n_1}{n_0 + n_1}$			

Optimal Trivial Predictor Derivations

0/1 error 0 if $n_0 > n_1 \text{ else } 1$

log-likelihood	<u> </u>
	$n_0 + n_1$

 $L(v) = vn_1 + (1 - v)n_0$

$$L(v) = n_1 \log v + n_0 \log(1 - v)$$
$$\frac{d}{dv}L(v) = 0$$
$$n_1 \quad n_0$$

$$0 = \frac{n_1}{v} - \frac{n_0}{1 - v}$$

$$\frac{n_0}{-v} = \frac{n_1}{v}$$

$$\frac{v}{-v} = \frac{n_1}{n_0} \quad \land (0 \le v \le 1) \implies v = \frac{n_1}{n_0 + n_1}$$

Decision Trees

Decision trees are a simple approach to **classification**

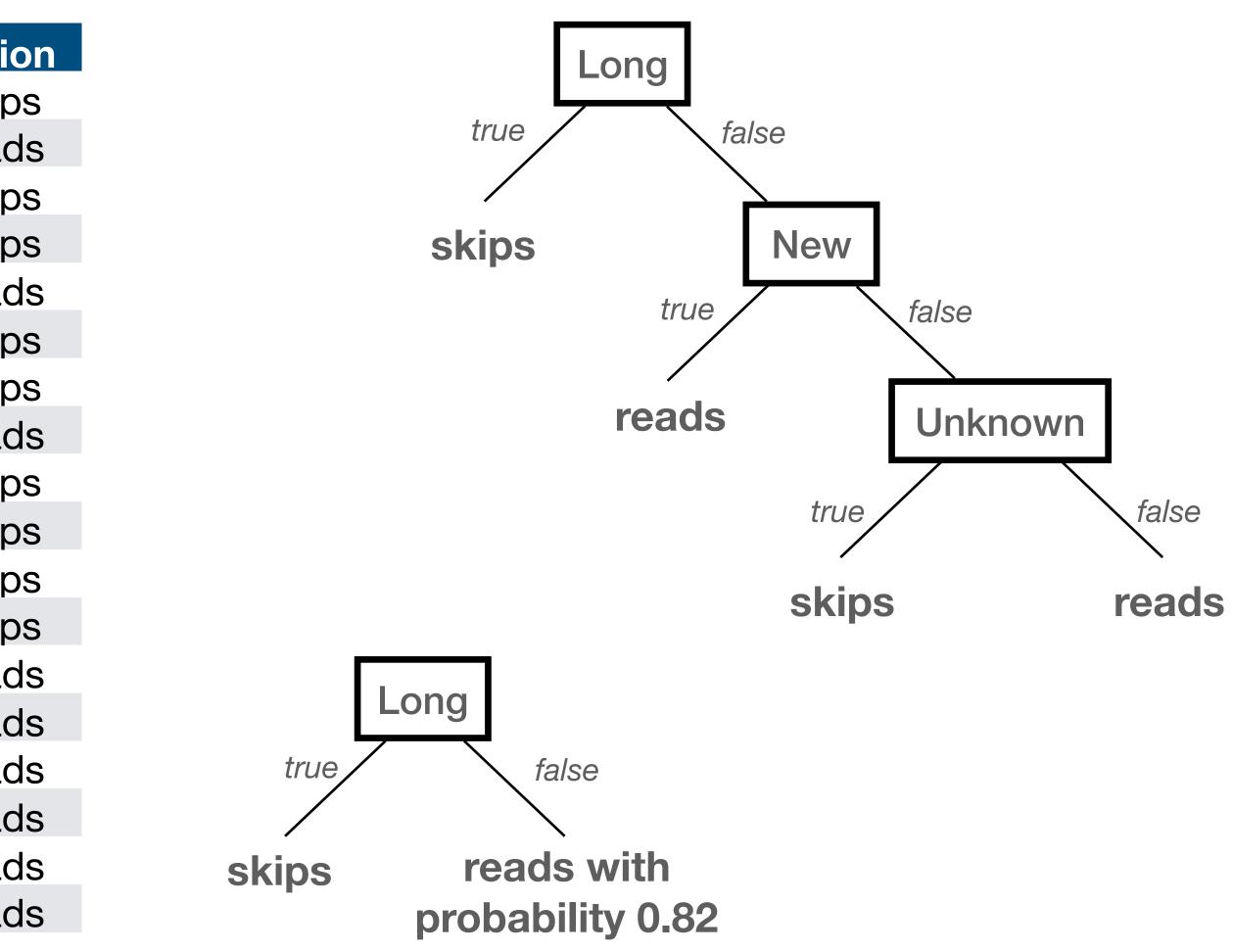
Definition:

A decision tree is a tree in which

- Every internal node is labelled with a condition (Boolean function of an example)
- Every internal node has two children, one labelled true and one labelled false
- Every leaf node is labelled with a **point estimate** on the target

Decision Trees Example

Example	Author	Thread	Length	Where	Actio
e1	known	new	long	home	skip
e2	unknown	new	short	work	reac
e3	unknown	followup	long	work	skip
e4	known	followup	long	home	skip
e5	known	new	short	home	reac
e6	known	followup	long	work	skip
e7	unknown	followup	short	work	skip
e8	unknown	new	short	work	reac
e9	known	followup	long	home	skip
e10	known	new	long	work	skip
e11	unknown	followup	short	home	skip
e12	known	new	long	work	skip
e13	known	followup	short	home	reac
e14	known	new	short	work	reac
e15	known	new	short	home	reac
e16	known	followup	short	work	reac
e17	known	new	short	home	reac
e18	unknown	new	short	work	reac



Building Decision Trees

How should an agent **choose** a decision tree?

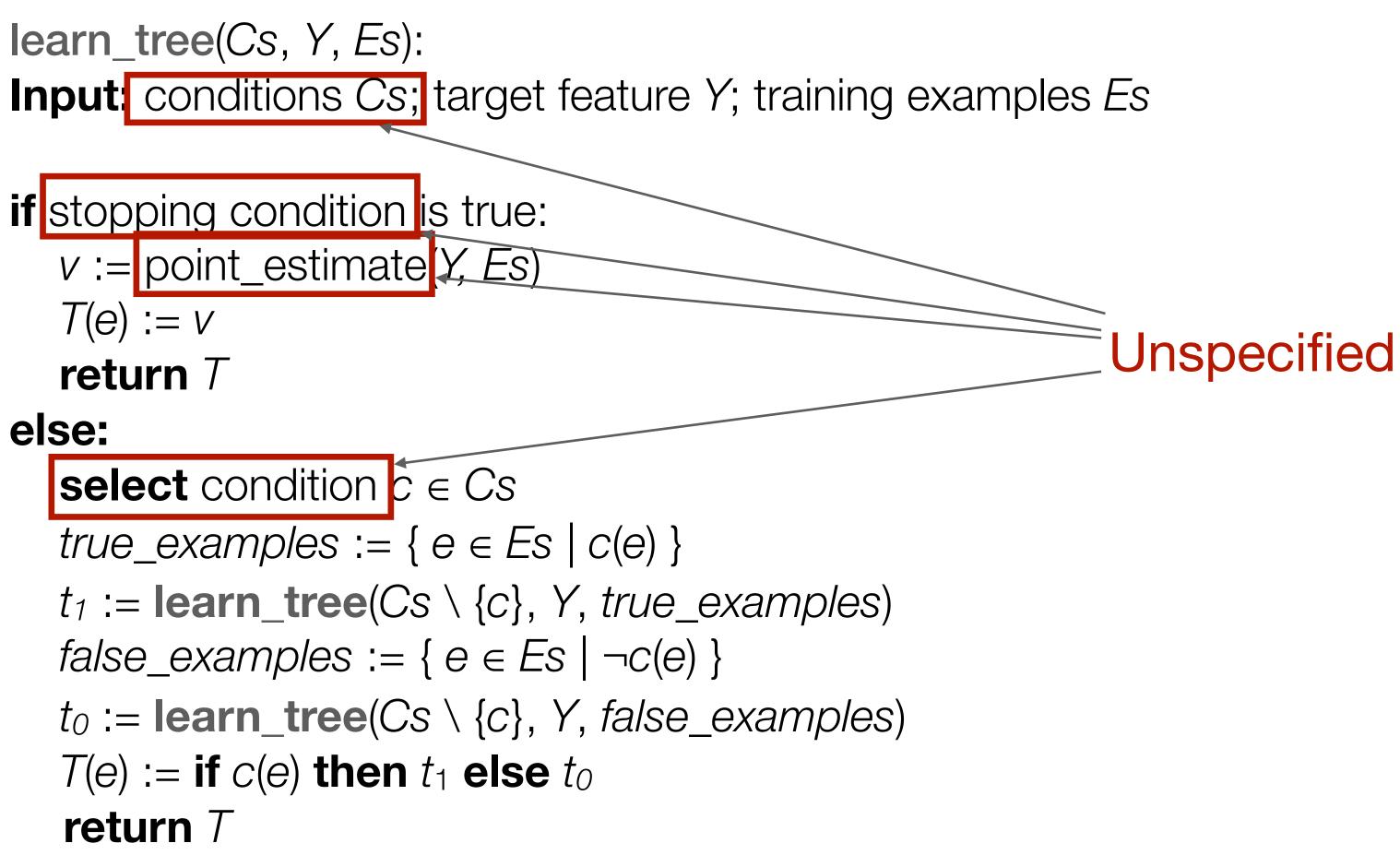
- **Bias:** which decision trees are preferable to others?
- **Search:** How can we search the space of decision trees?
 - Search space is **prohibitively large**
 - Idea: Choose features to branch on one by one •

Tree Construction Algorithm

learn_tree(Cs, Y, Es):
Input: conditions Cs; target feature Y; training examples Es

if stopping condition is true: $v := point_estimate(Y, Es)$ T(e) := vreturn T else: **select** condition $c \in Cs$ true_examples := { $e \in Es \mid c(e)$ } $t_1 := \text{learn_tree}(Cs \setminus \{c\}, Y, true_examples)$ false_examples := { $e \in Es \mid \neg c(e)$ } $t_0 := \text{learn_tree}(Cs \setminus \{c\}, Y, false_examples)$ $T(e) := if c(e) then t_1 else t_0$ return T

Tree Construction Algorithm



Stopping Criterion

- **Question:** When **must** the algorithm stop? \bullet
 - No more **conditions**
 - No more **examples**
 - All examples have the **same label**
- Additional possible criteria:
 - \bullet children (**why**?)
 - ullet
 - (**why**?)
 - Maximum depth: Do not split if the depth reaches a maximum (why?)

Minimum child size: Do not split a node if there would be too few examples in one of the

Minimum number of examples: Do not split a node with too few examples (why?)

Improvement criteria: Do not split a node unless it improves some criterion sufficiently

Leaf Point Estimates

- Question: What point estimate should go on the leaves?
 - Modal target value
 - Median target value (unless categorical)
 - Mean target value (unless categorical or ordinal)
 - **Distribution** over target values
- Question: What point estimate optimally classifies the leaf's examples?

Split Conditions

- Question: What should the set of conditions be?
 - Boolean features can be used directly
 - Partition domain into subsets
 - E.g., thresholds for ordered features
 - One branch for each domain element

Choosing Split Conditions

- Standard answer: **myopically optimal** condition
 - the best performance?

• **Question:** Which condition should be chosen to split on?

• If this was the only split, which condition would result in

Linear Regression

- Linear regression is the problem of fitting a linear function to a set of training examples
 - Both input and target features must be numeric
- Linear function of the input features:

$$\hat{Y}^{w}(e) = w_0 + w_0$$
$$= \sum_{i=0}^{n} w_i Z_{i=0}$$

- $w_1 X_1(e) + \ldots + w_n X_n(e)$
- $X_i(e)$

Gradient Descent

- For some loss functions (e.g., sum of squares), linear regression has a **closed-form solution**
- For others, we use gradient descent
 - Gradient descent is an iterative method to find the minimum of a function.
 - For minimizing error:

 $w_i := w_i -$

$$\eta \frac{\partial}{\partial w_i} error(E, w)$$

Gradient Descent Variations

Incremental gradient descent: update each weight after each example in turn

 $\forall e_i \in E : w_i := v$

of examples

 $\forall E_i : w_i := w_i$

random to update on

$$w_i - \eta \frac{\partial}{\partial w_i} error(\{e_j\}, w)$$

Batched gradient descent: update each weight based on a batch

$$a_i - \eta \frac{\partial}{\partial w_i} error(E_j, w)$$

• Stochastic gradient descent: repeatedly choose example(s) at

Linear Classification

- For binary targets represented by {0,1} and numeric input features, we can use linear function to estimate the probability of the class
- **Issue:** we need to constrain the output to lie within [0,1]
- Instead of outputting results of the function directly, send it through an **activation function** f: $\mathbb{R} \rightarrow [0,1]$ instead:

$$\hat{Y}^{w}(e) = f\left(\sum_{i=0}^{n} w_{i}X_{i}(e)\right)$$

logistic function:

sigmoid(x) =

referred to as logistic regression

Logistic Regression

A very commonly used activation function is the sigmoid or

$$\frac{1}{1+e^{-x}}$$

Linear classification with a logistic activation function is often

What if the target feature has k > 2 values?

- 1. Use *k* indicator variables
- 2. Learn each indicator variable **separately**
- 3. Normalize the predictions

Non-Binary Target Features

Linear Regression Trees

- Learning algorithms can be **combined** \bullet
- Example: Linear classification trees
 - Learn a decision tree until stopping criterion \bullet
 - \bullet remaining features
- Example: Linear regression trees \bullet
 - Learn a decision tree with **linear regression** in the **leaves** \bullet
 - split

If there are still features left in the leaf, learn a linear classifier on the

• Splitting criterion has to perform linear regression for each considered

Summary

- Decision trees:
 - Split on a condition at each internal node
 - Prediction on the **leaves** lacksquare
 - Simple, general; often a **building block** for other methods
- Linear Regression and Classification lacksquare
 - Fit a linear function to the input and target features
 - Often trained by gradient descent •

• For some loss functions, linear regression has a **closed analytic form**