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3. Identifiability



Labs & Assignment #1

• Assignment #1 was due Feb 4 (today) before lecture 

• Today's lab is from 5:00pm to 7:50pm in CAB 235 

• Last-chance lab for late assignments 

• Not mandatory 

• Opportunity to get help from the TAs



Patterns of dependence: 

1. Chain: Ends are not marginally independent,  
but conditionally independent given middle  

2. Common ancestor: descendants are not marginally 
independent, but conditionally independent given ancestor  

3. Common descendant: Ancestors are marginally independent, 
but not conditionally independent given descendant

Recap: Independence in a 
Belief Network

Belief Network Semantics:  
Every node is independent of its non-descendants, conditional only on its parents



Recap: Simpson's Paradox
• The joint distribution factors as  

P(G,D,R) = P(R | D, G) ⨉ P(D | G) ⨉ P(G) 

• Per-gender queries seem sensible: 

• Is the drug effective for males?  
P(R | D=true, G=male) = 0.60 
P(R | D=false, G=male) = 0.70 

• Is the drug effective for females? 
P(R | D=true, G=female) = 0.20 
P(R | D=false, G=female) = 0.30 

• Marginal query seems wrong: 

• Is the drug effective? 
P(R | D=true) = 0.50  
P(R | D=false) = 0.40
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Recap: Selection Bias
• Simpson's paradox is an example of selection bias 

• Whether subjects received treatment is systematically related 
to their response to the treatment 

• Observational query is computed as 
 

• This is the correct answer for the observational query 

• For the causal question, we don't want to condition on P(D | G), 
because our query is about forcing D=true
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P(R |D) =
P(R, D)

P(D)
=

∑G P(G, D, R)

∑G,R P(G, D, R)
=

∑G P(R |D, G)P(D |G)P(G)

∑G,R P(R |D, G)P(D |G)P(G)



Post-Intervention Distribution

• The causal query is really a query on a different distribution 
in which we have forced D=true 

• We will refer to the two distributions as the observational 
distribution and the post-intervention distribution 

• With a post-intervention distribution, we can compute the 
answers to causal queries using existing techniques  
(e.g., variable elimination)



Post-Intervention Distribution 
for Simpson's Paradox

• Observational distribution:  
P(G,D,R) = P(R | D, G) ⨉ P(D | G) ⨉ P(G) 

• Question: What is the post-intervention distribution for 
Simpson's Paradox? 

• We're forcing D=true, so P(D=true | G) = 1 for all g∈dom(G) 

• That's the same as just omitting the P(D | G) factor 

• Post-intervention distribution: 
P(G,D,R) = P(R | D, G) ⨉ P(G)
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The Do-Calculus
• How should we express causal queries? 

• One approach: The do-calculus 

• Condition on observations:  
P(Y | X = x) 

• Express interventions with special do operator:  
P(Y | do(X=x) ) 

• Allows us to mix observational and interventional information: 
P(Y | Z=z, do(X=x))



Evaluating Causal Queries 
With the Do-Calculus

Given a query P(Y | do(X=x), Z=z): 

1. Construct post-intervention distribution P̂ by removing 
all links from X's direct parents to X 

2. Evaluate the observational query P̂(Y | X=x, Z=z) in the 
post-intervention distribution



Example: Simpson's Paradox
• Observational distribution:  

P(G,D,R) = P(R | D, G) ⨉ P(D | G) ⨉ P(G) 

• Observational query:  

• Observational query values: 
P(R | D=true) = 0.50 
P(R | D=false) = 0.40 

• Post-intervention distribution for causal query P(R | do(D=true)): 
P̂(G,D,R) = P(R | D, G) ⨉ P(G) 

• Causal query:  

• Causal query values: 
P(R | do(D=true)) = 0.40  
P(R | do(D=false)) = 0.50
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P(R |D) =
P(R, D)

P(D)
=

∑G P(G, D, R)

∑G,R P(G, D, R)
=

∑G P(R |D, G)P(D |G)P(G)

∑G,R P(R |D, G)P(D |G)P(G)

P(R |do(D = true)) = ̂P(R |D = true) =
∑G P(R |D, G)P(G)

∑G,R P(R |D, G)P(G)



Example: Rainy Sidewalk
Query: P(Rain | do(Wet=true) 

Natural network: 

• Observational distribution: 
P(Wet, Rain) = P(Wet|Rain)P(Rain) 

• Post intervention distribution:  
P̂(Wet=true, Rain) = P(Rain)P(Wet)  

• P(Rain | do(Wet=true)) = .50 

Inverted network: 

• Observational distribution: 
P(Wet, Rain) = P(Rain | Wet)P(Rain) 

• Post intervention distribution:  
P̂(Wet=true, Rain) = P(Rain | Wet)P(Wet) 

• P(Rain | do(Wet=true)) = .78
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Causal Models

• The natural network gives the correct answer to our causal 
query, but the inverted network does not  (Why?) 

• Not every factoring of a joint distribution is a valid 
causal model 

Definition: 
A causal model is a directed acyclic graph of random variables 
such that for every edge X→Y, the value of random variable X is 
realized before the value of random variable Y.

A: Both networks encode valid

factorings of the observational distribution,

but the inverted network does not encode


the correct causal structure. 



Alternative Representation: 
Influence Diagrams

Instead of adding a new operator, we can instead represent 
causal queries by augmenting the causal model with decision 
variables FD for each potential intervention target D. 

dom(FD) = dom(D) ⋃ {idle}

P(D |pa(D), FD) =
P(D |pa(D)) if FD = idle,
1 if FD ≠ idle ∧ D = FD,
0 otherwise.



Influence Diagrams Examples
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Partially Observable Models
• Sometimes we will have a causal model (i.e., graph), but not all of the 

conditional distributions 

• This is the case in most experiments! 

• Question: Why/how could this happen? 

• Observational data that didn't include all variables of interest 

• Some causal variables might be unobservable even in principle 

• Question: Can we still answer observational questions? 

• Question: Can we still answer causal questions?



Simpson's Paradox 
Variations
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Question: Can we answer the query P(R | do(D)) in these causal models?
(answers in subsequent slides)



Identifiability
• Many different distributions can be consistent with a given causal model 

• A causal query is identifiable if it is the same in every distribution that is 
consistent with the observed variables and the causal model 

Definition: (Pearl, 2000) 
The causal effect of X on Y is identifiable from a graph G if the quantity 
P(Y | do(X=x)) can be computed uniquely from any positive probability of the 
observed variables. 

I.e., if PM1(Y | do(X=x)) = PM2(Y | do(X=x)) for every pair of models M1,M2 such that 

1. The causal graph of both M1 and M2 is G 

2. The joint distributions on the observed variables v are equal: PM1(v) = PM2(v)



Direct Causes Criterion

Theorem: (Pearl, 2000)  
Given a causal graph G of any Markovian model in which a 
subset of variables V are observed, the causal effect  
P(Y | do(X=x)) is identifiable whenever {X ⋃ Y ⋃ pa(X)} are 
observable. 
That is, whenever X, Y, and all parents of X are observable.



Simpson's Paradox 
 Revisited #1
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Question: Can we answer the query P(R | do(D)) in these causal models?
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Yes

(answers in subsequent slides)



Back Door Paths

• An undirected path is a path that ignores edge directions 

• Examples: X,Y,Z and A,B,C above 

• A back-door path from S to T is an undirected path from S to T where the first arc enters S 

• Examples:  

• A,B,C is a back-door path 

• Y,Z is a back-door path 

• X,Y,Z is not a back-door path

X Y Z A B C



Back Door Criterion
Definition: 
A set Z of variables satisfies the back-door criterion with 
respect to a pair of variables X,Y if 

1. No node in Z is a descendant of X, and 

2. Z blocks every back-door path from X to Y 

Theorem: (Pearl 2000) 
If a set of observed variables Z satisfies the back-door criterion 
with respect to X,Y, then the causal effect of X on Y is 
identifiable and is given by the formula P(Y |do(X = x)) = ∑

z∈dom(Z)

P(Y |X = x, Z = z)P(Z = z) .



Simpson's Paradox 
 Revisited #2
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Summary
• Observational queries P(Y | X=x) are different from causal queries P(Y | do(X=x)) 

• To evaluate causal query P(Y | do(X=x)): 

1. Construct post-intervention distribution P̂ by removing all links from X's direct 
parents to X 

2. Evaluate the observational query P̂(Y | X=x, Z=z) in the post-intervention 
distribution 

• Not every correct Bayesian network is a valid causal model 

• Causal effects can sometimes be identified in a partially-observable model: 

• Direct causes criterion 

• Back-door criterion


