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Recap: 
Belief Network Semantics

• Graph representation represents a specific factorization of the 
full joint distribution 

• Distribution on each node conditional on its parents 

• Marginal distributions on nodes with no parents 

• Product of these distributions is the joint distribution 

• Not every possible factorization is a correct factorization 

• Semantics:  
Every node is independent of its non-descendants, 
conditional on its parents
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Recap: Variable Elimination
1. Condition on observations by conditioning 

2. Construct joint distribution factor by multiplication 

3. Remove non-query, non-observed variables by summing out 

4. Normalize at the end 

Interleaving order of sums and products can improve efficiency: 

 
 

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E) about 72 computations

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E)) about 28 computations



Reasoning About 
Independence

• A joint distribution can be factored in multiple different ways 

• A belief network represents a single such factoring 

• Some factorings are correct, some are incorrect
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Independence in a 
Joint Distribution

Question: How can we answer questions about independence using the 
joint distribution? 

Examples using P(A,B,T): 

1. Is A independent of B? 

• P(a | b) = P(a)  for all a ∈ dom(A), b ∈ dom(B)?  

2. Is T independent of A? 

• P(t | a) = P(t)  for all a ∈ dom(A), t ∈ dom(T)? 

3. Is A independent of B given T? 

• P(a | b, t) = P(a | t)  for all a ∈ dom(A), b ∈ dom(B), t ∈ dom(T)? 

P(A, B) = ∑
t∈T

P(A, B, T = t)

P(A, T ) = ∑
b∈B

P(A, B = b, T )

P(B, T ) = ∑
a∈A

P(A = a, B, T )

P(A) = ∑
b∈B

P(A, B = b)

P(B) = ∑
a∈A

P(A = a, B)

P(T ) = ∑
a∈A

P(A = a, T )

P(A |B, T ) =
P(A, B, T )

P(B, T )

P(A |B) =
P(A, B)

P(B)

P(A |T ) =
P(A, T )

P(T )

P(T |A) =
P(A, T )

P(A)



Independence in a 
Belief Network

• We can use the semantics of a correct belief network to answer 
questions about independence 

• Examples using the belief network at right: 

1. Is T independent of A? 

2. Is A independent of B given T? 

3. Is A independent of B?

Belief Network Semantics:  
Every node is independent of its non-descendants, conditional only on its parents

A

T

B



Chain
• Question: Is Report independent of Alarm given Leaving? 

• Intuitively: The only way learning Report tells us about Alarm is because it tells us about 
Leaving; but Leaving has already been observed 

• Formally: Report is independent of its non-descendants given only its parents 

• Leaving is Report's parent 

• Alarm is a non-descendant of Report 

• Question: Is Report independent of Alarm? 

• Intuitively: Learning Report gives us information about  Leaving, which gives us 
information about Alarm 

• Formally: Report is independent of Alarm given Report's parents; but the question is 
about marginal independence 

Alarm

Leaving

Report



Common Ancestor

Alarm

Fire

Smoke

• Question: Is Alarm independent of Smoke given Fire? 

• Intuitively: The only way learning Smoke tells us about Alarm is because it tells us about 
Fire; but Fire has already been observed 

• Formally: Alarm is independent of its non-descendants given only its parents 

• Fire is Alarm's parent 

• Smoke is a non-descendant of Fire 

• Question: Is Alarm independent of Smoke? 

• Intuitively: Learning Smoke gives us information about Fire, which gives us information 
about Alarm 

• Formally: Alarm is independent of Smoke given only Alarm's parents; but the question 
is about marginal independence



Common Descendant

Tampering

Alarm

Fire

• Question: Is Tampering independent of Fire given Alarm? 

• Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely.  If we then 
learn that Tampering is false, that makes it less likely that the Alarm is ringing because of a Fire. 

• Formally: Tampering is independent of Fire given only Tampering's parents; but we are 
conditioning on one of Tampering's descendants 

• Conditioning on a common descendant can make independent variables dependent 
through the explaining away effect 

• Question: Is Tampering independent of Fire? 

• Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening 

• Formally: Tampering is independent of Fire given Tampering's parents 

• Tampering has no parents, so we are always conditioning on them 

• Fire is a non-descendant of Tampering



Correctness of a 
Belief Network

A belief network is a correct representation of a joint distribution when 
the belief network answers "yes" to an independence question only if 
the joint distribution answers "yes" to the same question.

Questions:  
1. Is A independent of B in the above belief networks? 
2. Is A independent of B given T in the above belief networks?
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A: yes in graphs 4 and 5

 (rightmost 2)

A: yes in graphs 1, 2, 4



Causality Introduction: 
A Tale of Two Belief Networks

• Two different ways to factor the joint distribution between 
whether the sidewalk is Wet and whether it is Raining: 
 

• Each factorization corresponds to a different 
Belief Network 

Raining Wet P(Raining, Sidewalk)
F T 0.125
F F 0.375
T T 0.45
T F 0.05

P(Rain, Wet) = P(Wet ∣ Rain)P(Rain)
= P(Rain ∣ Wet)P(Wet)

Wet

Rain

Rain

Wet

Natural network

Inverted network



The Inverted Network 
Isn't Crazy

Corresponds to the factoring P(Rain | Wet)P(Wet) 

• Sometimes you want to answer the question  
Given that I observe that the sidewalk is Wet, what is 
the probability that it is currently Raining? 

• This is just updating our confidence in a hypothesis (it is 
Raining) given our observations (Wet sidewalk) 

• Could preprocess the causal network into this form to avoid 
having to do a lot of computations with Bayes' Rule

Rain

Wet

Inverted network



The Inverted Network 
Is Crazy

Corresponds to the factoring P(Rain | Wet)P(Wet) 

• If I cause my sidewalk to be Wet (by throwing water on it), 
what is the probability that it will start to Rain? 

• So, condition on Wet=true 

• This network seems to imply that it will be  
P(Rain | Wet=True) = .78 > P(Rain) = .5 

• .... wait, what? 

• Question: What is going wrong in this example?

Rain

Wet

Inverted network

A: this is  a causal query, but we're doing it in the observational graph



Observations vs. 
Interventions

• The semantics of Belief Networks are defined for observational 
questions 

• They don't directly model causal questions 

• In fact, in our Rainy Sidewalk example, we would get exactly 
the same (crazy) answer to our causal question from 
querying the natural network 

• The joint distribution represented by the networks 
doesn't model the situation in which I intervene 

• Adding a variable James_Throws_Water to the distribution



Simpson's Paradox

G D R count P(G,D,R)

M T T 18 0.225

M T F 12 0.15

M F T 7 0.0875

M F F 3 0.0375

F T T 2 0.025

F T F 8 0.1

F F T 9 0.1125

F F F 21 0.2625

• Is the drug effective for males? 
P(R | D=true, G=male) = 0.60 
P(R | D=false, G=male) = 0.70 

• Is the drug effective for females? 
P(R | D=true, G=female) = 0.20 
P(R | D=false, G=female) = 0.30 

• Is the drug effective? 
P(R | D=true) = 0.50 
P(R | D=false) = 0.40

Suppose we have information from two trials of a new drug:  
One on male test subjects, and one on female test subjects.



Simpson's Paradox, 
explained

• The joint distribution factors as  
P(G,D,R) = P(R | D, G) ⨉ P(D | G) ⨉ P(G) 

• Per-gender queries are answered directly by P(R | D, G)  

• For the overall query, we want   

• But that's not how the distribution factors.  If we follow the factoring above, we will instead 
compute 

 

• In our dataset, knowing whether a subject got the drug tells you something  
about their gender, and males have a higher overall recovery rate than females 

• P(R | G=male) = 0.625   vs P(R | G=female) = 0.275

D

G

R

P(R |D) =
∑G P(R |G, D)P(G)

∑G,R P(R |G, D)P(G)

P(R |D) =
P(R, D)

P(D)
=

∑G P(G, D, R)

∑G,R P(G, D, R)
=

∑G P(R |D, G)P(D |G)P(G)

∑G,R P(R |D, G)P(D |G)P(G)



Selection Bias
• This problem is an example of selection bias 

• Whether subjects received treatment is systematically related 
to their response to the treatment 

• This is why randomized trials are the gold standard for causal 
questions: 

• The only thing that determines whether or not a subject is 
treated is a random number  

• Random number is definitely independent of anything else 
(including response to treatment)
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Causal Inference Summary
In the next lecture, we will learn how to: 

• Systematically express causal queries 

• Mechanically compute their answers 

• Evaluate when a joint distribution is informative about 
causal queries 

• I.e., which causal queries are identifiable in a given 
dataset


