Independence in Belief Networks X Causality Introduction

P&M §8.4, Bar §3.4

CMPUT 366: Intelligent Systems

Lecture Outline

- Recap 1.
- 2. Reasoning About Independence
- 3. Causality Introduction

Recap: Belief Network Semantics

- Graph representation represents a specific **factorization** of the full joint distribution
 - Distribution on each node **conditional on its parents**
 - Marginal distributions on nodes with no parents
 - **Product** of these distributions is the joint distribution
 - Not every possible factorization is a **correct** factorization

Semantics:

Every node is **independent** of its **non-descendants**, conditional on its parents

Recap: Variable Elimination

- 1. Condition on observations by **conditioning**
- 2. Construct joint distribution factor by **multiplication**
- 3. Remove non-query, non-observed variables by summing out
- 4. Normalize at the end
- Interleaving order of sums and products can improve efficiency:

$$\sum_{A} \sum_{E} f_1(Q, A, B, C)$$
$$= \left(\sum_{A} f_1(Q, A, B, C)\right)$$

 $C) \times f_2(C, D, E)$

(3, C) $\times \left(\sum_{E} f_2(C, D, E)\right)$ about 28 computations

about 72 computations

Reasoning About Independence

- A belief network represents a **single** such factoring
- Some factorings are correct, some are incorrect

• A joint distribution can be factored in **multiple** different ways

Independence in a Joint Distribution

Question: How can we answer questions about independence using the joint distribution?

Examples using P(A, B, T):

- 1. Is A independent of B?
- $P(a \mid b) = P(a)$ for all $a \in dom(A)$, $b \in dom(B)$? ullet
- 2. Is *T* independent of *A*?
 - $P(t \mid a) = P(t)$ for all $a \in dom(A)$, $t \in dom(T)$?
- 3. Is A independent of B given T?
- $P(a \mid b, t) = P(a \mid t)$ for all $a \in dom(A)$, $b \in dom(B)$, $t \in dom(T)$?

$$P(A, B) = \sum_{t \in T} P(A, B, T)$$

$$P(A, T) = \sum_{b \in B} P(A, B) = B$$

$$P(B, T) = \sum_{a \in A} P(A) = a, B$$

$$P(A) = \sum_{b \in B} P(A, B) = B$$

$$P(B) = \sum_{a \in A} P(A) = a, B$$

$$P(T) = \sum_{a \in A} P(A) = a, B$$

$$P(T) = \frac{P(A, B, T)}{P(B, T)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid T) = \frac{P(A, T)}{P(T)}$$

$$P(T \mid A) = \frac{P(A, T)}{P(A)}$$

Independence in a Belief Network

Belief Network Semantics:

Every node is independent of its non-descendants, conditional only on its parents

- \bullet questions about independence
- Examples using the belief network at right:
 - Is T independent of A?
 - 2. Is A independent of B given T?
 - 3. Is A independent of B?

We can use the semantics of a correct belief network to answer

Chain

- **Question:** Is **Report** independent of **Alarm** given **Leaving**?
 - Intuitively: The only way learning **Report** tells us about **Alarm** is because it tells us about Leaving; but Leaving has already been observed
 - Formally: **Report** is independent of its non-descendants given only its parents
 - Leaving is Report's parent
 - Alarm is a non-descendant of **Report**
- **Question:** Is **Report** independent of **Alarm**?
 - Intuitively: Learning Report gives us information about Leaving, which gives us information about Alarm
 - Formally: Report is independent of Alarm given Report's parents; but the question is about marginal independence

Common Ancestor

- **Question:** Is **Alarm** independent of **Smoke** given **Fire**?
 - Intuitively: The only way learning Smoke tells us about Alarm is because it tells us about Fire; but Fire has already been observed
 - Formally: Alarm is independent of its non-descendants given only its parents
 - Fire is Alarm's parent
 - Smoke is a non-descendant of Fire \bullet
- **Question:** Is **Alarm** independent of **Smoke**?
 - Intuitively: Learning Smoke gives us information about Fire, which gives us information about Alarm
 - Formally: Alarm is independent of Smoke given only Alarm's parents; but the question is about marginal independence

- **Question:** Is **Tampering** independent of **Fire** given **Alarm**?
 - Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely. If we then learn that **Tampering** is false, that makes it less likely that the **Alarm** is ringing because of a **Fire**.
 - Formally: Tampering is independent of Fire given only Tampering's parents; but we are conditioning on one of Tampering's descendants
 - Conditioning on a common descendant can make independent variables dependent through the **explaining away** effect
- **Question:** Is **Tampering** independent of **Fire**?
 - Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening
 - Formally: Tampering is independent of Fire given Tampering's parents
 - **Tampering** has no parents, so we are always conditioning on them
 - Fire is a non-descendant of Tampering

Common Descendant

Correctness of a Belief Network

A belief network is a **correct** representation of a joint distribution when the belief network answers "yes" to an independence question only if the joint distribution answers "yes" to the same question.

Questions:

A: yes in graphs 4 and 5 Is A independent of B in the above belief networks? (rightmost 2) Is A independent of B given T in the above belief networks? A: yes in graphs 1, 2, 4

Causality Introduction: A Tale of Two Belief Networks

Raining	Wet	P(Raining, Sidewalk)	
F	Т	0.125	
F	F	0.375	
Т	Т	0.45	
Т	F	0.05	

• Two different ways to **factor** the joint distribution between whether the sidewalk is Wet and whether it is **Raining**:

```
P(\text{Rain}, \text{Wet}) = P(\text{Wet} | \text{Rain})P(\text{Rain})
```

- Each factorization corresponds to a different **Belief Network**
- = P(Rain | Wet)P(Wet)

Natural network

Inverted network

The Inverted Network Isn't Crazy

Corresponds to the factoring P(Rain | Wet)P(Wet)

- Sometimes you want to answer the question the probability that it is currently Raining?
 - Raining) given our observations (Wet sidewalk)
- having to do a lot of computations with **Bayes' Rule**

Given that I observe that the sidewalk is Wet, what is

• This is just updating our confidence in a hypothesis (it is

Inverted network

Could **preprocess** the causal network into this form to avoid

The Inverted Network Is Crazy

Corresponds to the factoring P(Rain | Wet)P(Wet)

- If I cause my sidewalk to be Wet (by throwing water on it), what is the probability that it will start to Rain?
 - So, condition on Wet=true
 - This network seems to imply that it will be P(Rain | Wet=True) = .78 > P(Rain) = .5
 - wait, what? \bullet
- **Question:** What is going wrong in this example?

A: this is a causal query, but we're doing it in the observational graph

Wet Rain Inverted network

Observations vs. Interventions

- The semantics of Belief Networks are defined for observational questions
 - They don't directly model causal questions
 - In fact, in our Rainy Sidewalk example, we would get exactly the same (crazy) answer to our causal question from querying the natural network
- The joint distribution represented by the networks doesn't model the situation in which I intervene
 - Adding a variable James_Throws_Water to the distribution

Simpson's Paradox

G	D	R	count	P(G,D,R)
Μ	Т	Т	18	0.225
Μ	Т	F	12	0.15
Μ	F	Т	7	0.0875
Μ	F	F	3	0.0375
F	Т	Т	2	0.025
F	Т	F	8	0.1
F	F	Т	9	0.1125
F	F	F	21	0.2625

- Suppose we have information from two trials of a new drug: One on male test subjects, and one on female test subjects.
 - Is the drug effective for males? $P(R \mid D=true, G=male) = 0.60$ $P(R \mid D=false, G=male) = 0.70$
 - Is the drug effective for females? $P(R \mid D=true, G=female) = 0.20$ $P(R \mid D=false, G=female) = 0.30$
 - Is the drug effective? $P(R \mid D=true) = 0.50$ $P(R \mid D=false) = 0.40$

Simpson's Paradox, explained

- The joint distribution factors as $P(G,D,R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$
- **Per-gender** queries are answered **directly** by P(R | D, G)
- For the overall query, we want $P(R \mid D)$
- ${\color{black}\bullet}$ compute

$$P(R \mid D) = \frac{P(R, D)}{P(D)} = \frac{\sum_{G, R} P(G, D, R)}{\sum_{G, R} P(G, D, R)} = \frac{\sum_{G} P(R \mid D, G) P(D \mid G) P(G)}{\sum_{G, R} P(R \mid D, G) P(D \mid G) P(G)}$$

- P(R | G=male) = 0.625 vs P(R | G=female) = 0.275

$$= \frac{\sum_{G} P(R \mid G, D) P(G)}{\sum_{G, R} P(R \mid G, D) P(G)}$$

But that's not how the distribution factors. If we follow the factoring above, we will instead

• In our dataset, knowing whether a subject **got the drug** tells you something about their **gender**, and males have a **higher overall recovery** rate than females

Selection Bias

- This problem is an example of selection bias
- Whether subjects received treatment is systematically related to their response to the treatment
- This is why randomized trials are the gold standard for causal questions:
 - The only thing that determines whether or not a subject is treated is a **random number**
 - Random number is definitely independent of anything else (including response to treatment)

Causal Inference Summary

In the next lecture, we will learn how to:

- Systematically **express** causal queries
- Mechanically **compute** their answers
- Evaluate when a joint distribution is **informative** about • causal queries
 - I.e., which causal queries are **identifiable** in a given dataset