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Recap: Belief Networks
Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a random 
variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its parents 

• The graph represents a specific factorization of the full joint distribution 

• Semantics:  
Every node is independent of its non-descendants, conditional on its 
parents
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Recap: Queries
• The most common task for a belief network is to query posterior 

probabilities given some observations 

• Easy cases: 

• Posteriors of a single variable conditional only on parents 

• Joint distributions of variables early in a compatible 
variable ordering 

• Typically, the observations have no straightforward relationship 
to the target 

• This lecture: mechanical procedure for computing arbitrary 
queries
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Smoke



Factors
• The Variable Elimination algorithm exploits the factorization of a joint 

probability distribution encoded by a belief network in order to answer queries 

• A factor is a function f(X1,...,Xk) from random variables to a real number 

• Input: factors representing the conditional probability tables from the belief 
network's chain rule decomposition. 

Pr(Leaving|Alarm)Pr(Smoke|Fire)Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire) 

              becomes  

f1(Leaving, Alarm)f2(Smoke,Fire)f3(Alarm,Tampering,Fire)f4(Tampering)f5(Fire) 

• Output: A new factor encoding the target posterior distribution



Conditional Probabilities 
as Factors

• A conditional probability P(Y | X1,...,Xn) is a factor f(Y,X1,...,Xn) that obeys the 
constraint: 

 

• Answer to a query is a factor constructed by applying operations to the input 
factors 

• Operations on factors are not guaranteed to maintain this constraint! 

• Solution: Don't sweat it! 

• Operate on unnormalized probabilities during the computation 

• Normalize at the end of the algorithm to re-impose the constraint

∀v1 ∈ dom(X1), v2 ∈ dom(X2), …, vn ∈ dom(Xn) : ∑
y∈dom(Y)

f(y, v1, …, vn) = 1



Conditioning
• Conditioning is an operation on a single factor  

• Constructs a new factor that returns the values of the original 
factor with some of its inputs fixed 

Definition: 
For a factor f1(X1,...,Xk), conditioning on Xi=vi yields a new factor  

f2(X1,...Xi-1,Xi+1,...,Xk) = (f1)Xi=vi  

such that for all values v1,...,vi-1,vi+1,...,vk in the domain of 
X1,...Xi-1,Xi+1,...,Xk, 

f2(v1,...,vi-1,vi+1,...,vk) = f1(v1,...,vi-1,vi,vi+1,...,vk).



Conditioning Example
f2(A,B) = f1(A,B,C)C=true

A B C value
F F F 0.1

F F T 0.88
F T F 0.12
F T T 0.45
T F F 0.7
T F T 0.66
T T F 0.1
T T T 0.25

A B value

F F 0.88

F T 0.45

T F 0.66

T T 0.25



Multiplication
• Multiplication is an operation on two factors 

• Constructs a new factor that returns the product of the rows 
selected from each factor by its arguments 

Definition: 
For two factors f1(X1,...,Xj,Y1,...,Yk) and f2(Y1,...,Yk,Z1,...,Zℓ),  
multiplication of f1 and f2 yields a new factor  

(f1 ⨉ f2) = f3(X1,...,Xj,Y1,...,Yk,Z1,...,Zℓ) 

such that for all values x1,...,xj,y1,...,yk,z1,...,zℓ, 

f3(x1,...,xj,y1,...,yk,z1,...,zℓ) = f1(x1,...,xj,y1,...,yk)f2(y1,...,yk,z1,...,zℓ).



Multiplication Example
f3(A,B,C) = f1(A,B) ⨉ f2(B,C) 

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B C value

F F 1.0

F T 0

T F 0.5

T T 0.25

A B C value
F F F 0.1

F F T 0
F T F 0.1
F T T 0.05
T F F 0.3
T F T 0
T T F 0.2
T T T 0.1



Summing Out
• Summing out is an operation on a single factor 

• Constructs a new factor that returns the sum over all values of a 
random variable of the original factor 

Definition:  
For a factor f1(X1,...,Xk), summing out a variable Xi yields a new factor  

                                   

such that for all values v1,...,vi-1,vi+1,...,vk in the domain of X1,...Xi-1,Xi+1,...,Xk, 

f2(X1, …, Xi−1, Xi+1, …, Xk) = ∑
Xi

f1

f2(v1, …, vi−1, vi+1, …, vk) = ∑
vi∈dom(Xi)

(v1, …, vi−1, vi, vi+1, …, vk)



Summing Out Example
f2(B) = ∑A f1(A,B)

A B value

F F 0.1

F T 0.2

T F 0.3

T T 0.4

B value
F 0.4
T 0.6



Variable Elimination
• Given observations Y1=v1,..,Yk=vk and query variable Q, we want 

     

• Basic idea of variable elimination: 

1. Condition on observations by conditioning 

2. Construct joint distribution factor by multiplication 

3. Remove unwanted variables (neither query nor observed) by summing out 

4. Normalize at the end 

• Doing these steps in order is correct but not efficient 

• Efficiency comes from interleaving the order of operations

P(Q ∣ Y1 = v1, …, Yk = vk) =
P(Q, Y1 = v1, …, Yk = vk)

∑q∈dom(Q) P(Q = q, Y1 = v1, …, Yk = vk)



Sums of Products

The computationally intensive part of variable elimination is 
computing sums of products 

Example: multiply factors f1(Q,A,B,C), f2(C,D,E); sum out A,E 

1.    

2.    

Total: about 72 computations

2. Construct joint distribution factor by multiplication 
3. Remove unwanted variables (neither query nor observed) by summing out

f3(Q, A, B, C, D, E) = f1(Q, A, B, C) × f2(C, D, E) : 26 multiplications

f4(Q, A, B) = ∑
A,E

f3(Q, A, B, C, D, E) : ∼ 23 additions



Efficient Sums of Products
We can reduce the number of computations required by changing their 
order. 

  

1.   

2.   

3.   

Total: about 28 computations

∑
A

∑
E

f1(Q, A, B, C) × f2(C, D, E)

= (∑
A

f1(Q, A, B, C)) × (∑
E

f2(C, D, E))
f3(C, D) = ∑

E

f2(C, D, E) : ∼ 22 additions

f4(Q, B, C) = ∑
A

f1(Q, A, B, C) : ∼ 23 additions

f5(Q, B, C, D) = f3(Q, B, C) × f4(B, C, D) : 24 multiplications



Variable Elimination Algorithm
Input: query variable Q; set of variables Vs; observations O; factors Ps representing 
conditional probability tables 

Fs := Ps 
for each X in Vs \ {Q} according to some elimination ordering: 
    Rs = { F in Fs | F involves X } 
    if X is observed:  
        for each F in Rs: 
            F' = F conditioned on observed value of X  
            Fs = Fs \ {F} ⋃ {F'} 
    else: 
        T := product of factors in Rs 
        N := sum X out of T  
        Fs := Fs \ Rs ⋃ {N} 
T := product of factors in Fs 
N := sum Q out of T 
return T / N



Variable Elimination Example: 
Conditioning

Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving 

P(Tampering, Fire, Alarm, Smoke, Leaving, Report) =  
P(Tampering)P(Fire)P(Alarm|Tampering,Fire)P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving) 

Construct factors for each table: 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f3(Smoke,Fire), f4(Leaving,Alarm), f5(Report,Leaving) } 

Condition on Smoke:  f6 = (f3)Smoke=true 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f5(Report,Leaving) } 

Condition on Report: f7 = (f5)Report=true 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f7(Leaving) }

Report

FireTampering

Alarm

Leaving

Smoke



Variable Elimination Example:  
Elimination

Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving 
{ f0(Tampering), f1(Fire), f2(Tampering,Alarm,Fire), f6(Fire), f4(Leaving,Alarm), f7(Leaving) } 

Sum out Fire from product of f1,f2,f6:  f8 = ∑Fire (f1 ⨉ f2 ⨉ f6) 
{ f0(Tampering), f8(Tampering,Alarm), f4(Leaving,Alarm), f7(Leaving) } 

Sum out Alarm from product of f8, f4:  f9 = ∑Alarm (f8 ⨉ f4) 
{ f0(Tampering), f9(Tampering,Leaving), f7(Leaving) } 

Sum out Leaving from product of f9, f7: f10 = ∑Leaving (f9 ⨉ f7) 
{ f0(Tampering), f10(Tampering) }

Report

FireTampering

Alarm

Leaving

Smoke



Query: P(Tampering | Smoke=true, Report=true)  
Variable ordering: Smoke, Report, Fire, Alarm, Leaving  
{ f0(Tampering), f10(Tampering) } 

Product of remaining factors: f11 = f0 ⨉ f10  
{ f11(Tampering) } 

Normalize by division:  
query(Tampering) = f11(Tampering) / (∑Tampering f11(Tampering))

Variable Elimination Example:   
Normalization
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FireTampering
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Optimizing Elimination Order
• Variable elimination exploits efficient sums of products on a 

factored joint distribution 

• The elimination order of the variables affects the efficiency of the 
algorithm 

• Finding an optimal elimination ordering is NP-hard 

• Heuristics (rules of thumb) for good orderings: 

• Min-factor: At every stage, select the variable that constructs the 
smallest new factor 

• Problem-specific heuristics



Optimization: Pruning
• The structure of the graph can allow us to drop leaf nodes that are 

neither observed nor queried 

• Summing them out for free 

• We can repeat this process:

Report

FireTampering

Alarm

Leaving

Smoke

Traffic

Restaurants 
Full



Optimization: Preprocessing

Finally, if we know that we are always going to be observing 
and/or querying the same variables, we can preprocess our 
graph; e.g.: 

1. Precompute the joint distribution of all the variables we 
will observe and/or query 

2. Precompute conditional distributions for our exact 
queries



Summary
• Variable elimination is an algorithm for answering queries based on a belief network 

• Operates by using three operations on factors to reduce graph to a single posterior 
distribution 

1. Conditioning 

2. Multiplication 

3. Summing out 

• Distributes operations more efficiently than taking full product and then summing out 

• Optimal order of operations is NP-hard to compute 

• Additional optimization techniques: heuristic ordering, pruning, precomputation


