INference In
Beliet Networks

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap
2. Factors
3. Variable Elimination

4. Efficiency

Recap: Belief Networks

Definition:
A belief network (or Bayesian network) consists of:

1. A directed acyclic graph, with each node labelled by a random
variable

2. A domain for each random variable
3. A conditional probability table for each variable given its parents

* [he graph represents a specific factorization of the full joint distribution

e Semantics:

Every node is independent of its non-descendants, conditional on its
parents

Recap: Queries

The most common task for a belief network is to query posterior

probabilities given some observations
(e 2
Easy cases:

* Posteriors of a single variable conditional only on parents

e Joint distributions of variables early in a compatible
variable ordering

ypically, the observations have no straightforward relationship @

to the target

This lecture: mechanical procedure for computing arbitrary
queries Report

Factors

The Variable Elimination algorithm exploits the factorization of a joint
probabillity distribution encoded by a belief network in order to answer queries

A factor is a function f(Xx,...

Xk) from random variables to a real number

Input: factors representing the conditional probability tables from the belief

network's chain rule decom

nosiItion.

Pr(Leaving|Alarm)Pr(SmokelFire)Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire)

becomes

f1(Leaving, Alarm)f2(Smoke

Fire)fs(Alarm, Tampering, Fire)fs(Tampering)fs(Fire)

Output: A new factor encoding the target posterior distribution

Conditional Probabillities
as Factors

* A conditional probability P(Y | Xi,...,Xn) is a factor (Y, X4,....X») that obeys the
constraint:

Vv, € dom(X,),v, € dom(X,), ...,v, € dom(X)) : Z fo,vi,..v)| =1
yedom(Y)

 Answer to a query Is a factor constructed by applying operations to the input
factors

* QOperations on factors are not guaranteed to maintain this constraint!
e Solution: Don't sweat it!
* Operate on unnormalized probabilities during the computation

 Normalize at the end of the algorithm to re-impose the constraint

Conditioning

* Conditioning is an operation on a single factor

* (Constructs a new factor that returns the values of the original
factor with some of its inputs fixed

Definition:
For a factor 1(X1,...,Xk), conditioning on Xi=v; yields a new factor

fo(X1,.. X1, Xi+1,...,Xk) = (F1)xi=vi

such that for all values v1,...,Vi-1,Vis1,...,VkIN the domain of
X1, .. X1, Xie1, .00, Xk

fo(V1,...,Viet, Viet .., Vi) = F(V1,.00 Vi, Vi Vi, ., V).

Conditioning Example

fo(A,B) = (A, B, C)c=true

...

...

Multiplication

 Multiplication is an operation on two factors

o (Constructs a new factor that returns the product of the rows
selected from each factor by its arguments

Definition:
For two factors f1(X1,...,X;, Y1,..., Yx) and fo(Y4,..., Y Z£4,...,2)),
multiplication of f1 and f2 yields a new factor

(f1 X fo) = 13(X1,....X;, Y1,..., Yk Z4,...,2)

such that for all values x1,...,.x,y1,...,VkZ1,....2:

f30X1, .00, X0, V1,0, Y Z1, 00020 = TiXa, o X0 VA, V(WA . VK ZA, L, Z0).

MVultiplication Example

3(A,B,C) = 1(A,B) X (B, C)

A B C value

A B value B C value F | F | F 01
F . F i NS S NN

.

F T T 005

"""""" T EFE E 03

........... S BB B

"""""" ____F02

"""""" _____I_O_I

Summing Out

 Summing out is an operation on a single factor

e (Constructs a new factor that returns the sum over all values of a
random variable of the original factor

Definition:
For a factor f1(Xi,...,Xk), summing out a variable X; yields a new factor

A& X X n X0 = |) S,
X;

such that for all values v1,...,vi-1,Vis1,...,vkin the domain of Xi,.. Xi-1,Xis1,...,. Xk

Vs oo Vi s Vi s oo s Vi) = 2 (Vs eees Vi1 Vis Vi s -+ o5 Vi)
v.Edom(X))

Summing Out Example

fo(B) = 2 af1(A,B)

Variable Elimination

* Given observations Yi=v1,..,Yx=Vkx and query variable Q, we want
P(Q, Yl — Vl, ceeo Yk — Vk)

P(Q ‘ Yl :vl"'°’Yk=vk) —
zqedom(Q)P(Q — q9 Yl — VI, ...,Yk — vk)

* Basic idea of variable elimination:
1. Condition on observations by conditioning

2. Construct joint distribution factor by multiplication

3. Remove unwanted variables (neither query nor observed) by summing out

4. Normalize at the end
* Doing these steps in order is correct but not efficient

o Efficiency comes from interleaving the order of operations

Sums of Products

The computationally intensive part of variable elimination Is
computing sums of products

Example: multiply factors f1(Q,A,B,C), f2(C,D,E); sum out A,E
1. £(0,A,B,C,D,E) =f,(0,A,B,C) X f,(C,D, E) : 2° multiplications
2. f(Q.A,B)=Y f(Q.A,B,C,D,E): ~ 2’ additions

AE

Total: about 72 computations

Ffficient Sums of Products

We can reduce the number of computations required by changing their

order.
Y Y £(0.A,B,C) x f;(C. D, E)
A E
= (Zfl(Q,A,B, C)) X (Zfz(C, D. E)>
A E

1. £(C.D)=) £(C,D,E) : ~ 2* additions
2. f400,B,C) =EZfl(Q,A,B, C) : ~ 2° additions
A

3 f:(Q,B,C,D) = £,(0, B, C) X f,(B, C, D) : 2* multiplications

Total: about 28 computations

Variable Elimination Algorithm

Input: query variable Q); set of variables Vs; observations O; factors Ps representing
conditional probability tables

Fs :=Ps
for each X in Vs \ {Q} according to some elimination ordering:
Rs = {Fin Fs | Finvolves X}
If X Is observed:
for each F In Rs:
F' = F conditioned on observed value of X
Fs=Fs\{F} U {F'}
else:
[:= product of factors in Rs
N := sum X out of T
Fs :=Fs\Rs U {\N}
I := product of factors in Fs
N :=sum Qout of T
return 7 /N

Variable Elimination Example:

Conditioning
?
Query: P(Tampering | Smoke=true, Report=true)

Variable ordering: Smoke, Report, Fire, Alarm, Leaving s

Gomer) e 2

~(Tampering, Fire, Alarm, Smoke, Leaving, Report) =
P(Tampering)P(Fire)P(Alarm|Tampering, Fire)P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving)

Construct factors for each table:

{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), f3(Smoke,Fire), fa(Leaving,Alarm), fs(Report,Leaving) }

Condition on Smoke: fs = (f3)smoke=true
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fs(Fire), fa(Leaving,Alarm), fs(Report,Leaving) }

Condition on ?eport: f7 = (f5)Report:true
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fs(Fire), fa(Leaving,Alarm), fz(Leaving) }

Variable Elimination eExample:
Elimination

S

Query: P(Tampering | Smoke=true, Report=true)
Variable ordering: SmoekeRepor, Fire, Alarm, Leaving
[fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fs(Fire), fa(Leaving,Alarm), fz(Leaving) }

Sum out Fire from product of f1,fo,fs: fs = > Fire (f1 X 2 X 16)
[fo(Tampering), fs(Tampering,Alarm), f4(Leaving,Alarm), f7(Leaving) }

Sum out Alarm from product of fs, f4: fo =3 aarm (fs X f4)
[fo(Tampering), fo(Tampering,Leaving), f7(Leaving) }

Sum out Leaving from product of fg, f7: f10 = 3 Leaving (fo X f7)
{ fo(Tampering), f1o(Tampering) }

Variable Elimination eExample:
Normalization

Gomer) e 2

Query: P(Tampering | Smoke=true, Report=true)
Variable ordering: smokeRepor+HreAlarmteaving
{ fo(Tampering), f1o(Tampering) }

Product of remaining factors: f11 = fo X f1o
{ f11(Tampering) }

Normalize by division:
query(Tampering) = f11(Tampering) / (2 Tampering f11(Tampering))

Optimizing Elimination Order
e Variable elimination exploits efficient sums of products on a

factored joint distribution

* The elimination order of the variables affects the efficiency of the
algorithm

* Finding an optimal elimination ordering is NP-hard
* Heuristics (rules of thumb) for good orderings:

* Min-factor: At every stage, select the variable that constructs the
smallest new factor

* Problem-specific heuristics

Optimization: Pruning

* The structure of the graph can allow us to drop leaf nodes that are

 \We can repeat this process:

heither observed nor queried

* Summing them out for free

Optimization: Preprocessing

-inally, It we know that we are always going to be observing

and/or querying the same variables, we can preprocess our
graph; e.qg..

1.

Precompute tr

Will observe ar

e joint distribution of all the variables we
d/or query

2. Precompute conditional distributions for our exact

gueries

Summary

e Variable elimination is an algorithm for answering queries based on a belief network

e Qperates by using three operations on factors to reduce graph to a single posterior
distribution

1. Conditioning
2. Multiplication
3. Summing out
e Distributes operations more efficiently than taking full product and then summing out
e Optimal order of operations is NP-hard to compute

* Additional optimization techniques: heuristic ordering, pruning, precomputation

