Inference in Belief Networks

CMPUT 366: Intelligent Systems

P&M §8.4

Lecture Outline

- 1. Recap
- 2. Factors
- 3. Variable Elimination
- 4. Efficiency

Recap: Belief Networks

Definition:

A belief network (or Bayesian network) consists of:

- variable
- 2. A **domain** for each random variable

- **Semantics:** parents

1. A directed acyclic graph, with each node labelled by a random

3. A conditional probability table for each variable given its parents

• The graph represents a specific **factorization** of the full **joint distribution**

Every node is **independent** of its **non-descendants**, **conditional** on its

Recap: Queries

- The most common task for a belief network is to query posterior probabilities given some observations
- Easy cases:
 - Posteriors of a single variable conditional only on parents
 - Joint distributions of variables early in a compatible variable ordering
- Typically, the observations have no straightforward relationship to the target
- This lecture: mechanical procedure for computing arbitrary queries

Factors

- The Variable Elimination algorithm exploits the factorization of a joint
- network's chain rule decomposition.

Pr(Leaving|Alarm)Pr(Smoke|Fire)Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire)

becomes

 f_1 (Leaving, Alarm) f_2 (Smoke, Fire) f_3 (Alarm, Tampering, Fire) f_4 (Tampering) f_5 (Fire)

Output: A new factor encoding the target posterior distribution

probability distribution encoded by a belief network in order to answer queries

• A factor is a function $f(X_1, \dots, X_k)$ from random variables to a real number

Input: factors representing the **conditional probability tables** from the belief

Conditional Probabilities as Factors

constraint:

 $\forall v_1 \in dom(X_1), v_2 \in dom(X_2), \dots, v_n$

- factors
 - ullet
 - Solution: **Don't sweat it**!
 - \bullet

• A conditional probability $P(Y | X_1, ..., X_n)$ is a factor $f(Y, X_1, ..., X_n)$ that obeys the

$$v_n \in dom(X_n) : \left[\sum_{y \in dom(Y)} f(y, v_1, \dots, v_n)\right] = 1$$

• Answer to a query is a factor **constructed by applying operations** to the input

Operations on factors are not guaranteed to **maintain** this constraint!

Operate on **unnormalized probabilities** during the computation

• **Normalize** at the end of the algorithm to re-impose the constraint

Conditioning

- **Conditioning** is an operation on a **single factor**
 - Constructs a **new factor** that returns the values of the original ulletfactor with some of its inputs fixed

Definition: For a factor $f_1(X_1,...,X_k)$, **conditioning on X_i = v_i** yields a new factor

$$f_2(X_1,...,X_{i-1},X_{i+1},...,X_k) = (f_1)_{X_i=V_i}$$

such that for all values $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k$ in the domain of $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k$

 $f_2(V_1,\ldots,V_{i-1},V_{i+1},\ldots,V_k)$

$$f_{i}(V_{1},\ldots,V_{i-1},V_{i+1},\ldots,V_{k}).$$

Conditioning Example

 $f_2(A,B) = f_1(A,B,C)_{C=\text{true}}$

Α	В	С	value
F	F	F	0.1
F	F	Т	0.88
F	Т	F	0.12
F	Т	Т	0.45
Т	F	F	0.7
Т	F	Т	0.66
Т	Т	F	0.1
Т	Τ	T	0.25

Α	В	value
F	F	0.88
F	Т	0.45
Т	F	0.66
Т	Т	0.25

Multiplication

- Multiplication is an operation on two factors lacksquare
 - \bullet selected from each factor by its arguments

Definition: For two factors $f_1(X_1,...,X_l,Y_1,...,Y_k)$ and $f_2(Y_1,...,Y_k,Z_1,...,Z_l)$, multiplication of *f*₁ and *f*₂ yields a new factor

such that for all values $X_1, \ldots, X_i, Y_1, \ldots, Y_k, Z_1, \ldots, Z_\ell$,

$$f_{3}(x_{1},\ldots,x_{j},y_{1},\ldots,y_{k},Z_{1},\ldots,Z_{\ell}) =$$

Constructs a new factor that returns the **product** of the rows

 $(f_1 \times f_2) = f_3(X_1, \dots, X_l, Y_1, \dots, Y_k, Z_1, \dots, Z_\ell)$

 $f_1(X_1,\ldots,X_i,V_1,\ldots,V_k)f_2(V_1,\ldots,V_k,Z_1,\ldots,Z_\ell)$

Multiplication Example

	В	С	valı
	F	F	1.(
	F	Т	0
	Т	F	0.
	Т	Т	0.2

Α	В	value	
F	F	0.1	
F	Т	0.2	
Т	F	0.3	
Т	Т	0.4	

$f_3(A,B,C) = f_1(A,B) \times f_2(B,C)$

Α	В	С	value	
F	F	F	0.1	
F	F	Т	0	
F	Т	F	0.1	
F	Т	Т	0.05	
Т	F	F	0.3	
Т	F	Т	0	
Т	Т	F	0.2	
Т	Т	Т	0.1	

Summing Out

- Summing out is an operation on a single factor
 - Constructs a new factor that returns the **sum over all values** of a random variable of the original factor

Definition: For a factor $f_1(X_1,...,X_k)$, summing G

 $f_2(X_1, ..., X_{i-1}, X_{i-1})$

such that for all values $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_k$ in the domain of $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k$,

 $f_2(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_k) =$

For a factor $f_1(X_1,...,X_k)$, summing out a variable X_i yields a new factor

$$X_{i+1}, \dots, X_k) = \left(\sum_{X_i} f_1\right)$$

$$= \sum_{\mathbf{v}_i \in dom(X_i)} (v_1, \dots, v_{i-1}, \mathbf{v}_i, v_{i+1}, \dots, v_k)$$

Summing Out Example

Α	В	value	
F	F	0.1	
F	Т	0.2	
Т	F	0.3	
Т	Т	0.4	

 $f_2(B) = \sum_A f_1(A, B)$

В	value
F	0.4
Τ	0.6

Given

$$P(Q \mid Y_1 = v_1, ..., Y_k = v_k) = \frac{P(Q, Y_1 = v_1, ..., Y_k = v_k)}{\sum_{q \in dom(Q)} P(Q = q, Y_1 = v_1, ..., Y_k = v_k)}$$

- Basic idea of variable elimination:
 - 1. Condition on observations by **conditioning**
 - Construct joint distribution factor by **multiplication**
 - З.
 - 4. Normalize at the end
- Doing these steps in order is **correct** but not **efficient**
- Efficiency comes from **interleaving** the order of operations \bullet

Variable Elimination

Remove unwanted variables (neither query nor observed) by summing out

Sums of Products

- Construct joint distribution factor by multiplication
- Remove unwanted variables (neither query nor observed) by summing out

computing **sums** of **products**

- 1. $f_3(Q, A, B, C, D, E) = f_1(Q, A, B, C) \times f_2(C, D, E) : 2^6$ multiplications
- 2. $f_4(Q, A, B) = \sum f_3(Q, A, B, C, D, E) : \sim 2^3$ additions A,E

Total: about 72 computations

- The computationally intensive part of variable elimination is
- **Example**: multiply factors $f_1(Q, A, B, C)$, $f_2(C, D, E)$; sum out A, E

Efficient Sums of Products

order.

$$\sum_{A} \sum_{E} f_1(Q, A, B, C) \times f_2(C, D, E)$$
$$= \left(\sum_{A} f_1(Q, A, B, C)\right) \times \left(\sum_{E} f_2(C, D, E)\right)$$

1.
$$f_3(C, D) = \sum_{E} f_2(C, D, E) : \sim 2$$

2. $f_4(Q, B, C) = \sum_{A} f_1(Q, A, B, C)$
3. $f_5(Q, B, C, D) = f_3(Q, B, C) \times f_4$

Total: about 28 computations

- We can reduce the number of computations required by changing their

- ² additions
- $: \sim 2^3$ additions
- $(B, C, D) : 2^4$ multiplications

Variable Elimination Algorithm

conditional probability tables

Fs := Psfor each X in Vs \setminus {Q} according to some elimination ordering: $Rs = \{ F \text{ in } Fs \mid F \text{ involves } X \}$ if X is observed: for each *F* in *R*s: F' = F conditioned on observed value of X $Fs = Fs \setminus \{F\} \cup \{F'\}$ else: T :=**product** of factors in Rs $N := \operatorname{sum} X$ out of T $Fs := Fs \setminus Rs \cup \{N\}$ T := **product** of factors in Fs N :=**sum** Q out of Treturn T / N

Input: query variable Q; set of variables Vs; observations O; factors Ps representing

Conditioning

Query: P(Tampering | Smoke=true, Report=true) Variable ordering: Smoke, Report, Fire, Alarm, Leaving

P(Tampering, Fire, Alarm, Smoke, Leaving, Report) = P(Tampering)P(Fire)P(Alarm|Tampering,Fire)P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving)

Construct **factors** for each table: { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_3 (Smoke, Fire), f_4 (Leaving, Alarm), f_5 (Report, Leaving) }

Condition on Smoke: $f_6 = (f_3)_{\text{Smoke}=\text{true}}$ { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_6 (Fire), f_4 (Leaving, Alarm), f_5 (Report, Leaving) }

Condition on Report: $f_7 = (f_5)_{\text{Report=true}}$ { f₀(Tampering), f₁(Fire), f₂(Tampering,Alarm,Fire), f₆(Fire), f₄(Leaving,Alarm), f₇(Leaving) }

ke	$\mathbf{)}$

Variable Elimination Example: Fire Elimination Alarm Smok Leaving

Query: P(Tampering | Smoke=true, Report=true) Variable ordering: Smoke, Report, Fire, Alarm, Leaving { f_0 (Tampering), f_1 (Fire), f_2 (Tampering, Alarm, Fire), f_6 (Fire), f_4 (Leaving, Alarm), f_7 (Leaving) }

Sum out Fire from **product** of f_1, f_2, f_6 : $f_8 = \sum_{\text{Fire}} (f_1 \times f_2 \times f_6)$ { f_0 (Tampering), f_8 (Tampering, Alarm), f_4 (Leaving, Alarm), f_7 (Leaving) }

Sum out Alarm from product of f_8 , f_4 : $f_9 = \sum_{\text{Alarm}} (f_8 \times f_4)$ { f₀(Tampering), f₉(Tampering, Leaving), f₇(Leaving) }

Sum out Leaving from product of f_9 , f_7 : $f_{10} = \sum_{\text{Leaving}} (f_9 \times f_7)$ { f_0 (Tampering), f_{10} (Tampering) }

ke	$\mathbf{)}$

Variable Elimination Example: Fire Normalization Alarm Smok Leaving

Query: P(Tampering | Smoke=true, Report=true) Variable ordering: Smoke, Report, Fire, Alarm, Leaving { f_0 (Tampering), f_{10} (Tampering) }

Product of remaining factors: $f_{11} = f_0 \times f_{10}$ { f_{11} (Tampering) }

Normalize by division: query(Tampering) = f_{11} (Tampering) / (\sum Tampering f_{11} (Tampering))

ke	$\mathbf{)}$

Optimizing Elimination Order

- Variable elimination exploits efficient sums of products on a factored joint distribution
- The elimination order of the variables affects the efficiency of the algorithm
- Finding an **optimal** elimination ordering is **NP-hard**
- **Heuristics** (rules of thumb) for good orderings:
 - **Min-factor:** At every stage, select the variable that constructs the \bullet smallest new factor
 - **Problem-specific** heuristics

Optimization: Pruning

- neither observed nor queried
 - Summing them out for **free**
- We can **repeat** this process:

• The structure of the graph can allow us to drop leaf nodes that are

Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying the same variables, we can preprocess our graph; e.g.:

- 1. will observe and/or query
- queries

Precompute the joint distribution of all the variables we

2. Precompute **conditional distributions** for our exact

Summary

- distribution
 - Conditioning 1.
 - Multiplication 2.
 - 3. Summing out
- \bullet
 - **Optimal** order of operations is **NP-hard** to compute lacksquare

• Variable elimination is an algorithm for answering queries based on a belief network

• Operates by using three **operations** on **factors** to reduce graph to a single posterior

Distributes operations more efficiently than taking full product and then summing out

• Additional optimization techniques: heuristic ordering, pruning, precomputation