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Labs & Assignment #1

• Assignment #1 is due Feb 4 (next Monday) before lecture 

• Today's lab is from 5:00pm to 7:50pm in CAB 235 

• Last lab before the assignment is due 

• Not mandatory 

• Opportunity to get help from the TAs



Recap: Independence
Definition:  
Random variables X and Y are marginally independent iff 

        P(X=x | Y=y) = P(X=x) 

for all values of x ∈ dom(X) and y ∈ dom(Y).  

Definition:  
Random variables X and Y are conditionally independent given Z iff 

        P(X=x | Y=y, Z=z) = P(X=X | Z = z) 

for all values of x ∈ dom(X), y ∈ dom(Y), and z ∈ dom(Z). 



Recap: 
Exploiting Independence

• Explicitly specifying an entire unstructured joint distribution 
is tedious and unnatural 

• We can exploit conditional independence: 

• Conditional distributions are often more natural to write 

• Joint probabilities can be extracted from conditionally 
independent distributions by multiplication



Belief Networks, informally

• We can represent the pattern of dependence 
in a distribution as a directed acyclic graph 

• Nodes are random variables 

• Arc to each node from the variables on which 
it depends
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Clock Scenario

• Alice's observation depends on the actual time 

• So does Bob's 

• Neither depends on each other's observation A

T

B



Fire Alarm Scenario
• Agent wants to deduce whether there is a 

fire in the building next door 

• The fire alarm detects heat from fires 

• But it can also be set off by tampering  

• A fire causes visible smoke 

• People usually leave the building as a 
group when the fire alarm goes off 

• When lots of people leave the building, our 
friend will tell us 
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Conditional Probabilities
• Graph representation represents a specific factorization 

of the full joint distribution 

• Distribution on each node conditional on its parents 

• Marginal distributions on nodes with no parents 

• Semantics:  
Every node is independent of its non-descendants, 
conditional on its parents

Tampering

Alarm

Fire

Smoke

Leaving

Report

Fire P(F)
r1 0.01

Smoke Fire P(S|F)
1 1 0.9
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Belief Networks

Definition: 
A belief network (or Bayesian network) consists of: 

1. A directed acyclic graph, with each node labelled by a 
random variable 

2. A domain for each random variable 

3. A conditional probability table for each variable given its 
parents



Report

Queries
• The most common task for a belief network is to query 

posterior probabilities given some observations 

• Easy case:  

• Observations are the parents of query target 

• More common cases: 

• Observations are the children of query target 

• Observations have no straightforward relationship 
to the target
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Extracting Joint Probabilities: 
Variable Ordering

To compute joint probability distribution, we need a 
variable ordering that is consistent with the graph 

for i from 1 to n: 
    select an unlabelled variable with no unlabelled parents 
    label it as i    
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Question: 

Is this guaranteed to 
exist at every step?  
Why?
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A: Yes, because the graph is acyclic.



Extracting Joint Probabilities

Pr(Tampering) = Pr(Tampering) 

Pr(Tampering, Fire) = Pr(Tampering)Pr(Fire) 

Pr(Tampering, Fire, Alarm) =  
Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire) 

Pr(Tampering, Fire, Alarm, Smoke) = 
Pr(Smoke|Fire)Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire) 

Pr(Tampering, Fire, Alarm, Smoke, Leaving) = 
Pr(Leaving|Alarm)Pr(Smoke|Fire)Pr(Alarm|Tampering,Fire)Pr(Tampering)Pr(Fire)
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• Multiply joint distributions in variable order 

• Example: Given variable ordering  
Tampering, Fire, Alarm, Smoke, Leaving



Observing Children
• Observing children can render conditionally independent nodes conditionally 

dependent 

• Extreme example: The Coins scenario 

• Observing both B and C1 uniquely determines C2 

• Similar effect called explaining away: 

• We start with prior probabilities of Tampering and Fire 

• Question: If we observe that Alarm is ringing, how are these posterior 
probabilities different? 

• Question: If we then observe Smoke, how do these posterior probabilities 
change?
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A: Both increase

A: P(fire) increases, P(tampering) decreases



Constructing Belief Networks
• A belief network is correct if it encodes true conditional 

independence relationships: All nodes are independent of 
their non-descendants given their parents 

• A joint distribution can, in general, have many correct 
encodings as belief networks 

• Some encodings are better than others: 

• They represent natural relationships 

• They are more compact (they require fewer probabilities)
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Questions: 

1. Which of 
the graphs 
at the right 
is a correct 
encoding of 
the Clock 
scenario? 
Why? 

2. Which of 
the graphs 
at the right 
is a good 
encoding? 
Why?

correct

correct correct

incorrect

Middle two make no false promises

about conditional independence.

A: top graph is best, 

makes true promises


about conditional independence.



Mechanically Constructing 
Belief Networks

Given a joint distribution we can mechanically construct a correct encoding: 

1. Order the variables X1, X2, ..., Xn and associate each one with a node 

2. For each variable Xi: 

(i) Choose a minimal set of variables parents(Xi) from  
X1, ..., Xi-1 such that P(Xi | parents(Xi)) = P(Xi | X1, ..., Xi-1) 

(ii) i.e., conditional on parents(Xi), Xi is independent of all the other 
variables that are earlier in the ordering 

(iii) Add an arc from each variable in parents(Xi) to Xi   

(iv) Label the node for Xi with the conditional probability table  
P(Xi | parents(Xi))



Causal Network
• The arcs in belief networks do not, in general, represent causal 

relationships! 

• T→A is causal relationship if T causes the value of A 

• E.g., B doesn't cause T, but this is a correct encoding of the 
joint nevertheless 

• However, reasoning about causal relationships is often a good 
way to construct a natural encoding as a belief network 

• We can often reason about causal independence even when 
we don't know the full joint distribution
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Summary
• Belief networks represent a factoring of a joint distribution 

• Graph structure encodes conditional independence relationships 

• Can query posterior probabilities of subsets of variables given 
observations 

• Each joint distribution has multiple correct representations as a belief network 

• Some are more compact than others 

• Some are more natural than others 

• Arcs in a belief network often represent causal relationships 

• But they don't have to!


