Conditional Independence

CMPUT 366: Intelligent Systems

P&M §8.2

Lecture Outline

- 1. Recap
- 2. Structure
- 3. Marginal Independence
- 4. Conditional Independences

Recap: Probability

- Probability is a numerical measure of uncertainty
 - Not a measure of truth
- Semantics:
 - A possible world is a complete assignment of values to variables
 - Every possible world has a probability
 - Probability of a proposition is the sum of probabilities of possible worlds in which the statement is true

Recap: Conditional Probability

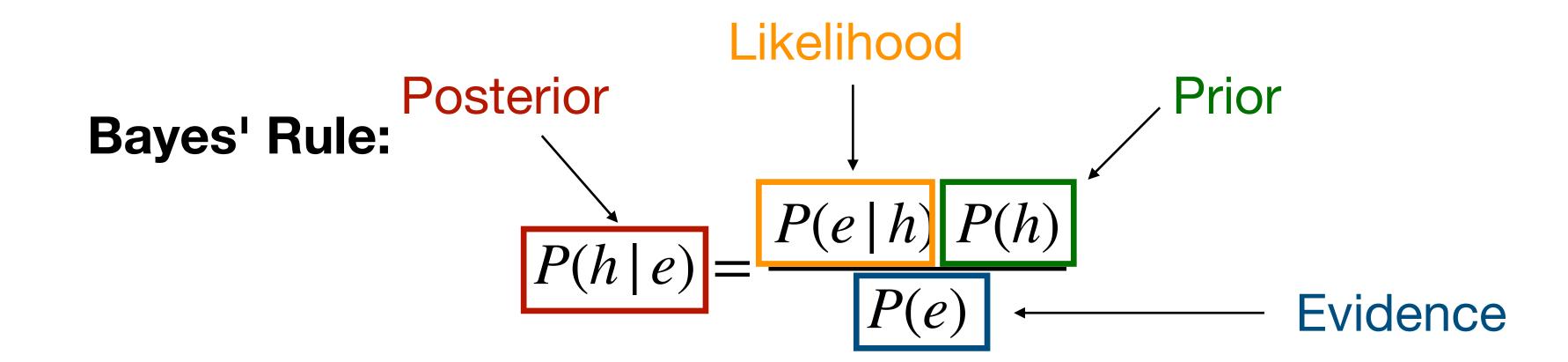
- When we receive **evidence** in the form of a proposition *e*, it rules out all of the possible worlds in which *e* is **false**
 - We set those worlds' probability to 0, and rescale remaining probabilities to sum to 1
- Result is probabilities conditional on e: P(h | e)

Recap: Bayes' Rule

• From the chain rule, we have

$$P(h, e) = P(h \mid e)P(e)$$
$$= P(e \mid h)P(h)$$

• Often, P(e | h) is easier to compute than P(h | e).



Unstructured Joint Distributions

- Probabilities are not fully arbitrary
 - Semantics tell us probabilities given the joint distribution.
 - Semantics alone do not restrict probabilities very much
- In general, we might need to explicitly specify the entire joint distribution
 - **Question:** How many numbers do we need to assign to fully specify a joint distribution of k binary random variables? A: $2^k 1$
- We call situations where we have to explicitly enumerate the entire joint distribution unstructured

Structure

- Unstructured domains are very hard to reason about
- Fortunately, most real problems are generated by some sort of underlying process
 - This gives us **structure** that we can exploit to represent and reason about probabilities in a more **compact** way
 - We can compute any required joint probabilities based on the process, instead of specifying every possible joint probability explicitly
- Simplest kind of structure is when random variables don't interact

Marginal Independence

When the value of one variable never gives you information about the value of the other, we say the two variables are marginally **independent**.

Definition:

Random variables X and Y are marginally independent iff

1.
$$P(X=x | Y=y) = P(X=x)$$
, and

2.
$$P(Y=y | X=x) = P(Y=y)$$

for all values of $x \in \text{dom}(X)$ and $y \in \text{dom}(Y)$.

Marginal Independence Example

- I flip four fair coins, and get four results: C₁, C₂, C₃, C₄
- Question: What is the probability that C_1 is heads?
 - $P(C_1 = heads)$ A: 1/2
- Suppose that C_2 , C_3 , and C_4 are tails
- Question: Now what is the probability that C₁ is heads?
 - P(C_1 = heads | C_2 = tails, C_3 = tails, C_4 = tails) A: 1/2

Exploiting Marginal Independence

Р

0.5

 C_1

Н

Proposition:

If X and Y are marginally independent, then

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$

- Instead of storing the entire joint distribution, we can store 4 marginal distributions, and use them to recover joint probabilties
 - Question: How many numbers do we need to assign to fully specify the marginal distribution for a single binary variable? A: 1
- If everything is independent, learning from observations is hopeless
 - But also if nothing is independent
 - The intermediate case, where many variables are independent, is ideal

```
C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub>
H H H H 0.0625
H H H T 0.0625
        H 0.0625
H H T T 0.0625
      H H 0.0625
      H T 0.0625
      T H 0.0625
      T T 0.0625
   H H H 0.0625
         T 0.0625
   H
      T H 0.0625
      T T 0.0625
      H H 0.0625
T T H T 0.0625
         H 0.0625
```

Clock Scenario

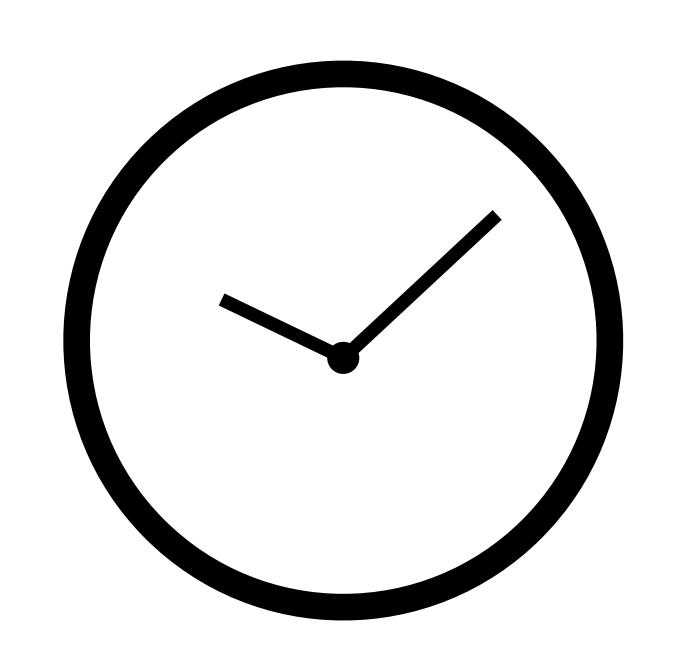
Example:

- I have a stylish but impractical clock with no number markings
- Two students, Alice and Bob, both look at the clock at the same time, and form opinions about what time it is
- Question: Are Alice and Bob's opinions independent?

$$P(A \mid B) \neq P(A)$$
 A: no

• Question: Suppose it is 10:00. Are A and B independent?

$$P(A \mid B, T=10:00) = P(A \mid T=10:00)$$
 A: yes



Random variables:

A - Time Alice thinks it is

B - Time Bob thinks it is

T - Actual time

Conditional Independence

When knowing the value of a **third** variable *Z* makes two variables *A*, *B* **independent**, we say that they are **conditionally independent given** *Z* (or **independent conditional on** *Z*).

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X=x | Y=y, Z=z) = P(X=X | Z=z)$$

for all values of $x \in \text{dom}(X)$, $y \in \text{dom}(Y)$, and $z \in \text{dom}(Z)$.

Clock example: A and B are conditionally independent given T.

Exploiting Conditional Independence

Proposition:

If X and Y are marginally independent given Z, then

$$P(X=x, Y=y | Z=z) = P(X=x | Z=z)P(Y=y | Z=z)$$

for all values of $x \in \text{dom}(X)$, $y \in \text{dom}(Y)$, and $z \in \text{dom}(Z)$.

- We can again just store smaller tables and recover joint distributions by multiplication
- Question: How many tables do we need to store for variables X, Y, Z when X and Y are independent given Z?
 A: 3

Caveats

- Sometimes, when two variables are marginally independent, they are also conditionally independent given a third variable
 - E.g., coins C_1 , and C_2 are marginally independent, and also conditionally independent given C_3 : Learning the value of C_3 does not make C_2 any more informative about C_1 .
- This is not always true
 - Consider another random variable: B is true if both C_1 and C_2 are the **same** value
 - C_1 and C_2 are marginally independent: $P(C_1=heads \mid C_2=heads) = P(C_1=heads)$
 - In fact, C_1 and C_2 are also both marginally independent of **B**: $P(C_1 \mid B=\text{true}) = P(C_1)$
 - But if I know the value of B, then knowing the value of C_1 tells me **exactly** what the value of C_2 must be: $P(C_1=heads \mid B=true, C_2=heads) \neq P(C_1=heads \mid B=true)$
 - C_1 and C_2 are not conditionally independent given B

Summary

- Unstructured joint distributions are exponentially expensive to represent (and operate on)
- Marginal and conditional independence are especially important forms of structure that a distribution can have
 - Vastly reduces the cost of representation and computation
 - Caveat: The relationship between marginal and conditional independence is not fixed
- Joint probabilities of (conditionally or marginally) independent random variables can be computed by multiplication