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Recap: Search
• Agent searches internal representation to find solution 

• Fully-observable, deterministic, offline, single-agent problems 

• Graph search finds a sequence of actions to a goal node 

• Efficiency gains from using heuristic functions to encode 
domain knowledge 

• Local search finds a goal node by repeatedly making small changes 
to the current state 

• Random steps and random restarts help handle local optima, 
completeness
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Uncertainty
• In search problems, agent has perfect knowledge of the 

world and its dynamics 

• In most applications, an agent cannot just make assumptions 
and then act according to those assumptions 

• Knowledge is uncertain: 

• Must consider multiple hypotheses 

• Must update beliefs about which hypotheses are likely 
given observations



Example: Wearing a Seatbelt
• An agent has to decide between three actions: 

1. Drive without wearing a seatbelt 

2. Drive while wearing a seatbelt 

3. Stay home 

• If the agent thinks that an accident will happen, it will just stay home 

• If the agent thinks that an accident will not happen, it will not bother to wear 
a seatbelt! 

• Wearing a seatbelt only makes sense because the agent is uncertain about 
whether driving will lead to an accident.



Measuring Uncertainty
• Probability is a way of measuring uncertainty 

• We assign a number between 0 and 1 to hypotheses: 

• 0 means absolutely certain that statement is false 

• 1 means absolutely certain that statement is true 

• Intermediate values mean more or less certain 

• Probability is a measurement of uncertainty, not truth 

• A statement with probability .75 is not "mostly true" 

• Rather, we believe it is more likely to be true than not



Subjective vs. Objective:  
The Frequentist Perspective

• Probabilities can be interpreted 
as objective statements about the world, or 
as subjective statements about an agent's beliefs 

• Objective view is called frequentist: 

• The probability of an event is the proportion of times it would 
happen in the long run of repeated experiments 

• Every event has a single, true probability 

• Events that can only happen once don't have a well-defined 
probability



Subjective vs. Objective:  
The Bayesian Perspective

• Probabilities can be interpreted 
as objective statements about the world, or  
as subjective statements about an agent's beliefs 

• Subjective view is called Bayesian: 

• The probability of an event is a measure of an agent's belief about its 
likelihood 

• Different agents can legitimately have different beliefs, so they can 
legitimately assign different probabilities to the same event 

• There is only one way to update those beliefs in response to new data 

• In this course, we will primarily take the Bayesian view[



Example: Dice
• Diane rolls a fair, six-sided die, and gets the number X 

• Question: What is P(X=5)?  (the probability that Diane rolled a 5) 

• Diane truthfully tells Oliver that she rolled an odd number. 

• Question: What should Oliver believe P(X=5) is? 

• Diane truthfully tells Greta that she rolled a number ≥ 5. 

• Question: What should Greta believe P(X=5) is? 

• Question: What is P(X=5)?

A: 1/6

A: 1/3

A: 1/2

A: 1



Semantics: 
Possible Worlds

• Random variables take values from a domain.  
We will write them as uppercase letters (e.g., X, Y, D, etc.) 

• A possible world is a complete assignment of values to 
variables 

• A probability measure is a function P : Ω → ℝ over 
possible worlds ω satisfying: 

1.   

2.   P(ω) ≥ 0 ∀ω ∈ Ω

∑
ω∈Ω

P(ω) = 1 Set of all possible worlds



Propositions
• A primitive proposition is an equality or inequality expression 

E.g., X = 5 or X ≥ 4 

• A proposition is built up from other propositions using logical connectives.  
E.g., (X=1 ∨ X=3 ∨ X=5) 

• The probability of a proposition is the sum of the probabilities of the possible 
worlds in which that proposition is true: 

   

• Therefore: 

P(α) = ∑
ω:ω⊧α

P(ω)

P(α ∨ β) P(α)
P(α ∧ β) P(α)
P(¬α) =

≥
≤

1 − P(α)

         means "𝛼 is true in ω"ω ⊧ α

𝛼∨β means "𝛼 OR β"

𝛼∧β means "𝛼 AND β"

¬𝛼 means "NOT 𝛼"



Joint Distributions
• In our dice example, there was a single random variable 

• We typically want to think about the interactions of multiple 
random variables 

• A joint distribution assigns a probability to each full 
assignment of values to variables 

• e.g., P(X=1, Y=5). Equivalent to P(X=1 ∧ Y=5) 

• Can view this as another way of specifying a 
single possible world



Joint Distribution Example
• What might a day be like in Edmonton?  

Random variables: 

• Weather,  
with domain {clear, snowing} 

• Temperature,  
with domain {mild, cold, very_cold} 

• Joint distribution  
P(Weather, Temperature):

Weather Temperature P

clear mild 0.2

clear cold 0.3

clear very cold 0.25

snowing mild 0.05

snowing cold 0.15

snowing very cold 0.1



Weather P

clear 0.75

snowing 0.25

Marginalization
• Marginalization is using a joint 

distribution P(X1, ...,Xm, ... Xn) to 
compute a distribution over a smaller 
number of variables P(X1, ..., Xm) 

• Smaller distribution is called the 
marginal distribution of its 
variables 

• We compute the marginal distribution 
by summing out the other variables: 

P(X, Y) = ∑
z∈dom(Z)

P(X, Y, Z = z)

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10

Question: 

What is the marginal 
distribution of 
Weather? A: P(clear) = .75


     P(snow) = .25



Conditional Probability

• Agents need to be able to update their beliefs based on new 
observations 

• This process is called conditioning 

• We write P(h | e) to denote "probability of hypothesis h given 
that we have observed evidence e" 

• P(h | e) is the probability of h conditional on e



P(ω ∣ e) = {
1

P(e) × P(ω) if ω ⊧ e,

0 otherwise.

Semantics of  
Conditional Probability

• Evidence e lets us rule out all of the worlds that are 
incompatible with e 

• E.g., if I observe that the weather is clear, I should no longer 
assign any probability to the worlds in which it is snowing 

• We need to normalize the probabilities of the remaining 
worlds to ensure that the probabilities of possible worlds 
sum to 1 

P(ω ∣ e) = {c × P(ω) if ω ⊧ e,
0 otherwise.



Weather P

clear 0.80

snowing 0.20

Conditional Probability 
Example

• My initial marginal belief about the 
weather was:  
      P(Weather=snow) = 0.25 

• Suppose I observe that the 
temperature is mild. 

• Question: What should I now 
believe about the weather? 

1. Rule out incompatible worlds 

2. Normalize remaining probabilities

Weather Temperature P

clear mild 0.20

clear cold 0.30

clear very cold 0.25

snowing mild 0.05

snowing cold 0.10

snowing very cold 0.10
A: P(snow) = .05/.25 =  .20



Chain Rule
Definition: conditional probability 
 

• We can run this in reverse to get 

Definition: chain rule 

P(h ∣ e) =
P(h, e)
P(e)

P(h, e) = P(h ∣ e) × P(e)

P(α1, …, αn) = P(α1) × P(α2 ∣ α1) × ⋯ × P(αn ∣ α1, …, αn−1)
= Πn

i=1P(αi ∣ α1, …, αi−1)



Bayes' Rule

• From the chain rule, we have 

• Often, P(e | h) is easier to compute than P(h | e). 

Bayes' Rule: 

P(h, e) = P(h ∣ e)P(e)
= P(e ∣ h)P(h)

P(h |e) =
P(e |h) P(h)

P(e)

Posterior
Likelihood

Prior

Evidence



Expected Value

• The expected value of a function on a random variable is the 
weighted average of that function over the domain of the 
random variable, weighted by the probability of each value: 

• The conditional expected value of a function is the 
expected value weighted by the conditional probability: 
 

𝔼 [f(X)] = ∑
x∈dom(X)

P(X = x)f(x)

𝔼 [f(X) ∣ Y = y] = ∑
x∈dom(X)

P(X = x ∣ Y = y)f(x)



Expected Value Examples

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Summary
• Probability is a numerical measure of uncertainty 

• Formal semantics: 

• Weights over possible worlds sum to 1 

• Probability of proposition is total weight of worlds in which 
that proposition is true 

• Conditional probability updates beliefs based on evidence 

• Expected value of a function is its probability-weighted 
average over possible worlds


