Probability Theory

CMPUT 366: Intelligent Systems

P&M §8.1

Recap: Search

- Agent searches internal representation to find solution
- Fully-observable, deterministic, offline, single-agent problems
- Graph search finds a sequence of actions to a goal node
 - Efficiency gains from using heuristic functions to encode domain knowledge
- Local search finds a goal node by repeatedly making small changes to the current state
 - Random steps and random restarts help handle local optima, completeness

Lecture Outline

- 1. Recap
- 2. Uncertainty
- 3. Probability Semantics
- 4. Conditional Probability
- 5. Expected Value

- world and its dynamics
- and then act according to those assumptions
- Knowledge is **uncertain**:
 - Must consider **multiple** hypotheses
 - given observations

Uncertainty

• In search problems, agent has perfect knowledge of the

In most applications, an agent cannot just make assumptions

Must update beliefs about which hypotheses are likely

Example: Wearing a Seatbelt

- An agent has to decide between three actions:
 - 1. Drive without wearing a seatbelt
 - 2. Drive while wearing a seatbelt
 - 3. Stay home
- If the agent thinks that an accident will happen, it will just stay home
- If the agent thinks that an accident will not happen, it will not bother to wear a seatbelt!
- Wearing a seatbelt only makes sense because the agent is **uncertain** about whether driving will lead to an accident.

Measuring Uncertainty

- Probability is a way of measuring uncertainty
- We assign a number between 0 and 1 to hypotheses:
 - 0 means absolutely certain that statement is false
 - 1 means absolutely certain that statement is true
 - Intermediate values mean more or less certain
- Probability is a measurement of uncertainty, not truth
 - A statement with probability .75 is not "mostly true"
 - Rather, we believe it is more likely to be true than not

Subjective vs. Objective: The Frequentist Perspective

- Probabilities can be interpreted as objective statements about the world, or as **subjective** statements about an agent's **beliefs**
- Objective view is called **frequentist**:
 - The probability of an event is the proportion of times it would happen in the long run of repeated experiments
 - Every event has a single, **true** probability
 - Events that can only happen once don't have a well-defined probability

Subjective vs. Objective: The Bayesian Perspective

- Probabilities can be interpreted \bullet as **objective** statements about the **world**, or as **subjective** statements about an agent's **beliefs**
- Subjective view is called **Bayesian**:
 - likelihood
 - \bullet
 - \bullet
- In this course, we will primarily take the **Bayesian** view

• The probability of an event is a measure of an agent's **belief** about its

Different agents can legitimately have **different beliefs**, so they can legitimately assign **different probabilities** to the same event

There is only one way to **update** those beliefs in response to new data

Example: Dice

- Diane rolls a fair, six-sided die, and gets the number X
 - Question: What is P(X=5)? (the probability that Diane rolled a 5) A: 1/6
- Diane truthfully tells Oliver that she rolled an odd number.
 - **Question:** What should **Oliver** believe P(X=5) is? A: 1/3
- Diane truthfully tells Greta that she rolled a number ≥ 5 .
 - **Question:** What should **Greta** believe P(X=5) is? A: 1/2
- Question: What is P(X=5)?

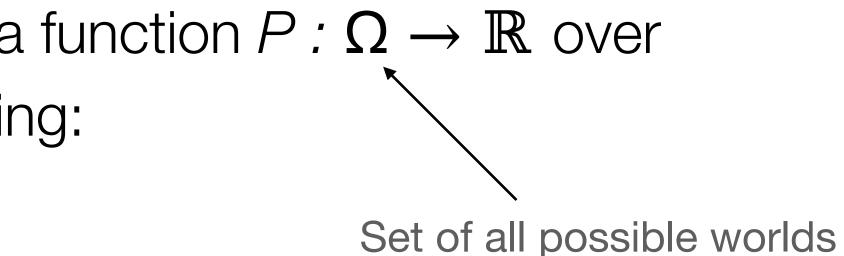
A: 1

Semantics: Possible Worlds

- Random variables take values from a domain. We will write them as uppercase letters (e.g., X, Y, D, etc.)
- A possible world is a complete assignment of values to variables
- A probability measure is a function $P : \Omega \to \mathbb{R}$ over possible worlds ω satisfying:

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

2. $P(\omega) \ge 0 \ \forall \omega \in \Omega$



Propositions

- A primitive proposition is an equality or inequality expression E.g., X = 5 or $X \ge 4$
- E.g., (X=1 V X=3 V X=5)
- worlds in which that proposition is true:

 $P(\alpha$

Therefore:

• A proposition is built up from other propositions using logical connectives.

• The **probability** of a proposition is the sum of the probabilities of the possible

$$\alpha) = \sum_{\omega:\omega\models\alpha} P(\omega)$$

 $\omega \models \alpha$ means " α is true in ω "

 $P(\alpha \lor \beta) \geq P(\alpha)$ $P(\alpha \wedge \beta) \leq P(\alpha)$

 $P(\neg \alpha) = 1 - P(\alpha)$

 $\alpha \lor \beta$ means " α OR β " $\alpha \wedge \beta$ means " α AND β " $\neg \alpha$ means "NOT α "

Joint Distributions

- In our dice example, there was a single random variable
- We typically want to think about the interactions of multiple random variables
- A joint distribution assigns a probability to each full assignment of values to variables
 - e.g., P(X=1, Y=5). Equivalent to $P(X=1 \land Y=5)$
 - Can view this as another way of specifying a single possible world

Joint Distribution Example

- What might a day be like in Edmonton? Random variables:
 - Weather, with domain {clear, snowing}
 - **Temperature**, with domain {mild, cold, very_cold}
- Joint distribution \bullet P(Weather, Temperature):

Weather	Temperature	Ρ
clear	mild	0.2
clear	cold	0.3
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.15
snowing	very cold	0.1

Marginalization

- Marginalization is using a joint distribution $P(X_1, \ldots, X_m, \ldots, X_r)$ compute a distribution over number of variables $P(X_1, \ldots)$
 - Smaller distribution is called the marginal distribution of its variables
- We compute the marginal distribution by summing out the other variables:

$$P(X, Y) = \sum_{z \in dom(Z)} P(X, Y,$$

Question:

What is the marginal distribution of Weather? A: P(clear) = .75 P(snow) = .25

OITI			
n) to			
a smaller			
$, X_m)$			

Z = z

Weather	Temperature	Ρ
clear	mild	0.20
clear	cold	0.30
clear	very cold	0.25
snowing	mild	0.05
snowing	cold	0.10
snowing	very cold	0.10

Conditional Probability

- observations
- This process is called **conditioning**
- that we have observed evidence e"
 - P(h | e) is the probability of h conditional on e

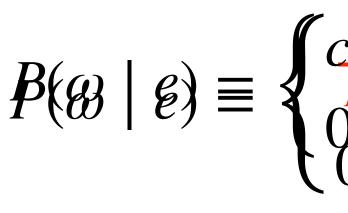
Agents need to be able to update their beliefs based on new

• We write P(h | e) to denote "probability of hypothesis h given

Semantics of Conditional Probability

- Evidence *e* lets us **rule out** all of the worlds that are incompatible with e

 - sum to 1



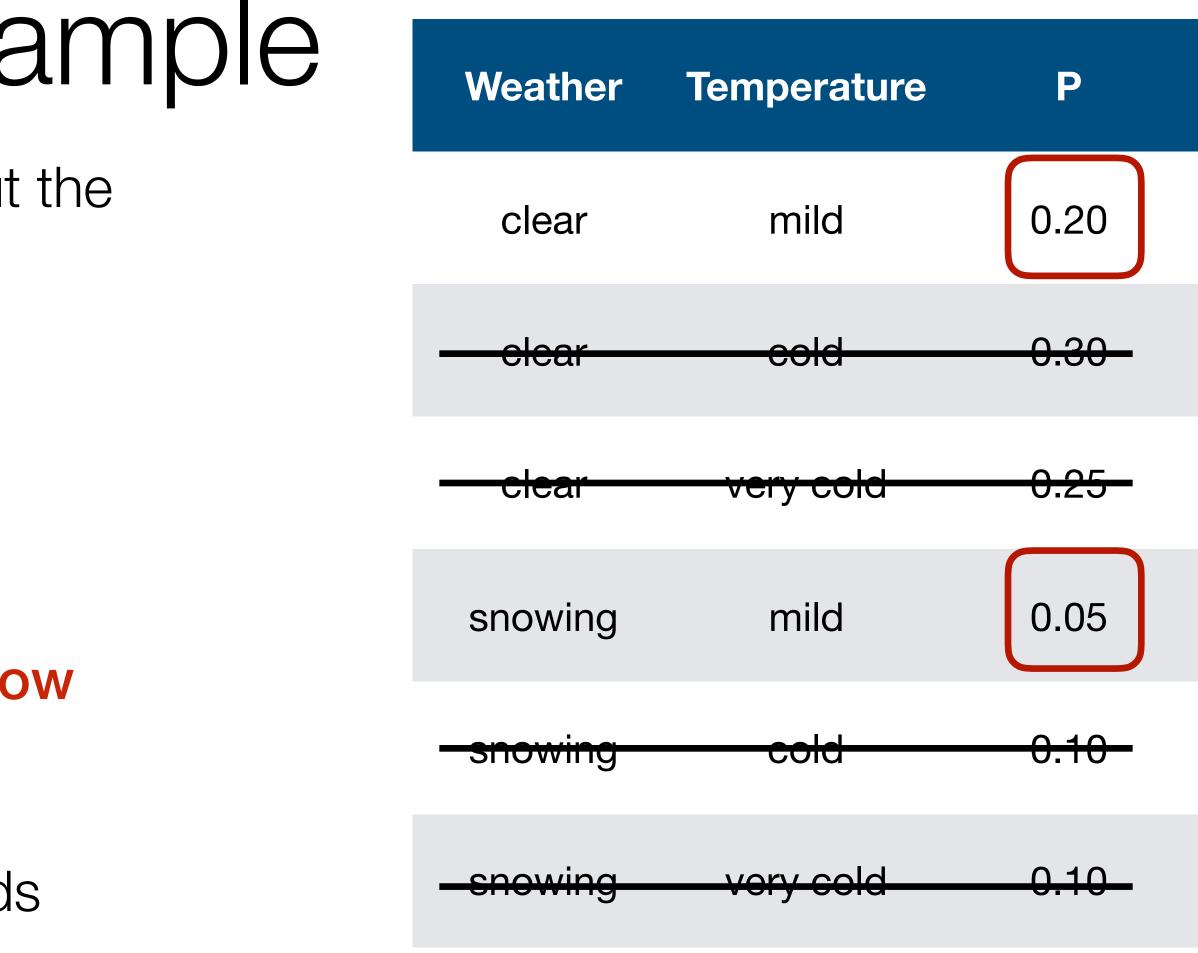
• E.g., if I observe that the weather is clear, I should no longer assign any probability to the worlds in which it is snowing

• We need to **normalize** the probabilities of the remaining worlds to ensure that the probabilities of possible worlds

> $P(\mathcal{B} \mid \mathcal{E}) \equiv \begin{cases} c \times P(\alpha p)(\omega^{\text{if}} \alpha f \overleftarrow{\omega} \mathcal{E} = e, \\ P(e) & \text{otherwise} \end{cases}$ otherwise. otherwise.

Conditional Probability Example Weather

- My initial marginal belief about the weather was:
 P(Weather=snow) = 0.25
- Suppose I observe that the temperature is **mild**.
 - Question: What should I now believe about the weather?
 A: P(snow) = .05/.25 = .20
- 1. Rule out incompatible worlds
- 2. Normalize remaining probabilities



Chain Rule

Definition: conditional probability

• We can run this **in reverse** to get $P(h, e) = P(h \mid e) \times P(e)$

Definition: chain rule

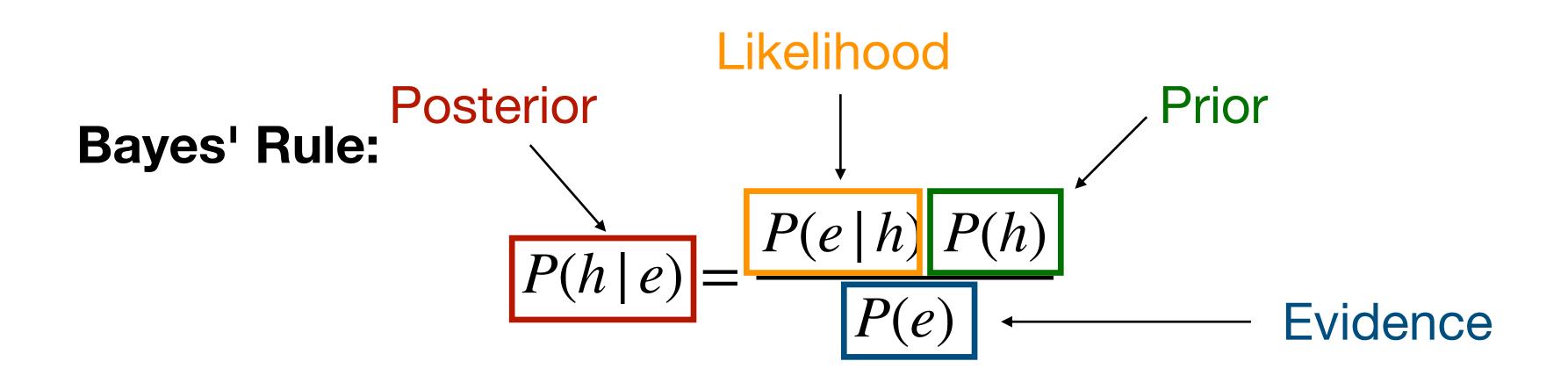
$$P(\alpha_1, \dots, \alpha_n) = P(\alpha_1) \times P($$
$$= \prod_{i=1}^n P(\alpha_i \mid$$

 $P(h \mid e) = \frac{P(h, e)}{P(e)}$

 $(\alpha_2 \mid \alpha_1) \times \cdots \times P(\alpha_n \mid \alpha_1, \dots, \alpha_{n-1})$ $\alpha_1, \ldots, \alpha_{i-1})$

Bayes' Rule

- From the chain rule, we have $P(h, e) = P(h \mid e)P(e)$ $= P(e \mid h)P(h)$
- Often, $P(e \mid h)$ is easier to compute than $P(h \mid e)$.



Expected Value

$$\mathbb{E}\left[f(X)\right] =$$

 $x \in$

• The **conditional expected value** of a function is the

$$\mathbb{E}\left[f(X) \mid Y = y\right] =$$

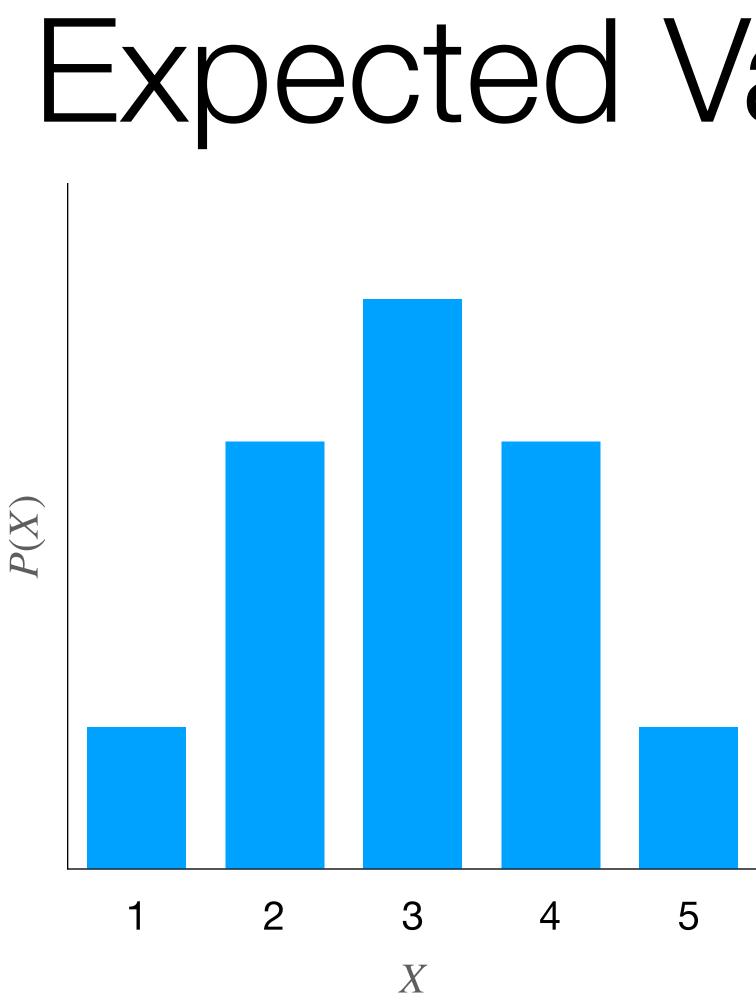
 $x \in$

 The expected value of a function on a random variable is the weighted **average** of that function over the domain of the random variable, weighted by the probability of each value:

$$\sum_{x \in dom(X)} P(X = x)f(x)$$

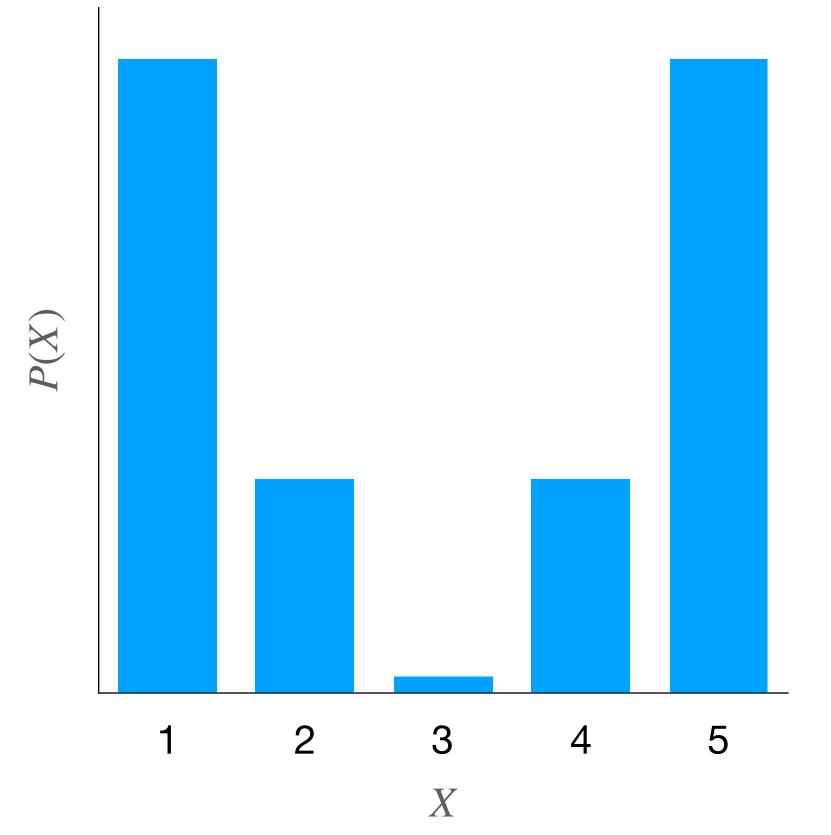
expected value weighted by the **conditional probability**:

$$\sum_{x \in dom(X)} P(X = x \mid Y = y)f(x)$$



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value Examples



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 12$

Summary

- Probability is a **numerical** measure of **uncertainty**
- Formal semantics:
 - Weights over possible worlds sum to 1
 - Probability of proposition is total weight of worlds in which that proposition is true
- Conditional probability updates beliefs based on evidence
- Expected value of a function is its probability-weighted average over possible worlds