Local Search

CMPUT 366: Intelligent Systems

P&M §4.7

Lecture Outline

- 1. Recap & Logistics
- 2. Local Search
- 3. Hill Climbing
- 4. Randomized Algorithms

Labs & Assignment #1

- Assignment #1 is released today
 See the website under Assignments (or on the Schedule)
- Due **February 4** before lecture
- Today's lab is from 5:00pm to 7:50pm in CAB 235
 - Not mandatory
 - You can get help from the TAs on your assignment in labs

Recap

- Graph search problems are an extremely general encoding for choosing a sequence of actions from a start state to a goal state
- Using heuristic functions can speed this process up
 - A* search is optimal but space-intensive
 - Branch & bound depth-first search is optimal and space efficient, but needs a good starting bound
- Varying the direction of search can exploit mismatches in forward and reverse branching factors

Searching for Goal Nodes

Sometimes, we know how to recognize a goal node, but not how to construct one.

Example (SAT problem): Given a Boolean formula,

$$P(X) = (X_1 \land X_2 \land \neg X_3) \lor \dots \lor (\neg X_{k-2} \land \neg X_{k-1} \land X_k)$$

Is there an assignment of truth values to the variables X_i that makes the formula true?

- State is the values of the different variables
- Easy to recognize when we've succeeded, but computing a "satisfying assignment" is NP-complete in general
- SAT is an example of a constraint satisfaction problem

Searching for Goal Nodes

We can encode SAT as a graph search problem (assignments as states, variable value changes as actions), *but*:

- 1. The space is too big to explore exhaustively
 - Question: How many states are there in a SAT problem with k variables?
 - Industrial SAT problems routinely have hundreds of thousands of variables
- 2. We don't care about the sequence of actions
 - Once we have a satisfying assignment, we are done

Local Search

- Idea: start from a random assignment, and then search around in the space of possible assignments
- Need not keep track of the sequence of moves that we took
- Intuitively:
 - Select an assignment of a value to each variable
 - Repeat:
 - Select a variable to change
 - Select a new value for that variable
 - until a satisfying assignment is found

Local Search Problem

Definition: Local Search Problem

- A constraint satisfaction problem: A set of variables, domains for the variables, and constraints on their joint assignment.
- Neighbours function: neighbours(n)
 - Maps from a node n to a set of "similar" nodes
- Score function: score(n)
 - Evaluates the "quality" of an assignment

Questions:

- 1. What are the nodes?
- 2. What are the goal nodes?

Neighbourhoods

- In previous graph search problems, the successor function represents states that can be reached from a given state by taking some actual action
 - In local search problems, the neighbours function is a design decision
 - We choose actions that will help us efficiently explore the space rather than trying to represent actual actions
- Usually the neighbourhood is states that differ in small ways from the current state (variable assignment)
 - E.g.: Assignments that differ in *k* different variables, possibly by a small amount

Heuristics vs. Scores

- Previously, the heuristic was optional, for improving efficiency
- In local search problems, the score function is required
 - The state space is **too big** to exhaustively explore, so uninformed search is not an option
 - Sometimes we don't even have a goal, we just want to maximize the quality of the state
- Example scores: number of unsatisfied clauses (in SAT);
 number of violated constraints (in CSP)

Generic Local Search Algorithm

Input: a constraint satisfaction problem; a *neighbours* function; a *score* function to maximize; a *stop_walk* criterion

```
current := random assignment of values to variables
incumbent := current
repeat
  if incumbent is a satisfying assignment:
     return incumbent
  if stop_walk():
     current := new random assignment of values to variables
  else:
     select a current from neighbours(current)
  if score(current) > score(incumbent):
     incumbent := current
until termination
```

Hill Climbing

- Idea: Select the neighbour with the highest score
 - This is called an improving step
 - If no improving steps available, halt and return incumbent
- We'll move toward the best solution once we are close enough
- This algorithm is called hill climbing:
 - It seeks the highest point on the scoring function's graph
 - It moves only uphill (i.e., it makes only improving steps)

Hill Climbing Algorithm

Input: a constraint satisfaction problem; a *neighbours* function; a *score* function to maximize

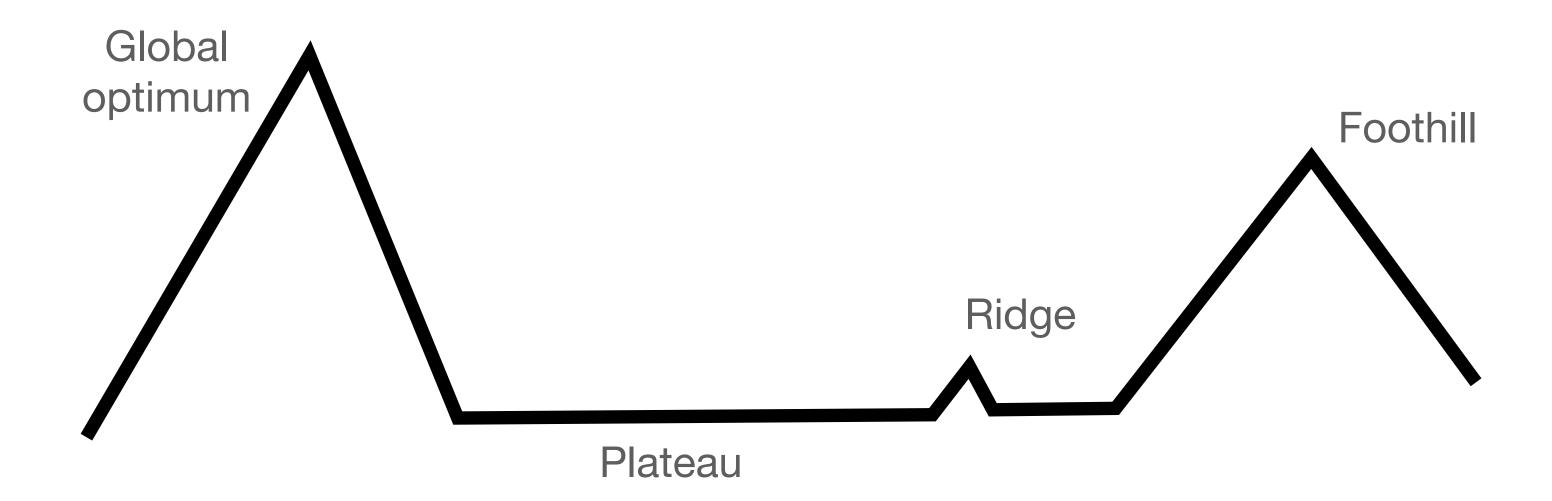
```
current := random assignment of values to variables
incumbent := current
repeat
  if incumbent is a satisfying assignment:
     return incumbent
  if False:
     current := new random assignment of values to variables
  else:
     current := n from neighbours(current) with maximum score(n)
  if score(current) > score(incumbent):
     incumbent := current
  else:
     return incumbent
until termination
```

Questions:

- Is hill climbing complete?
- 2. Is hill climbing optimal?

Hill Climbing Problems

- 1. Foothills: Local maxima that are not global maxima
- 2. Plateaus: Regions of the state space where the score is uninformative
- 3. Ridges: Foothills that would not be foothills with a larger neighbourhood
- 4. **Ignorance of the global optimum:** Unless we reach a satisfying assignment, we cannot be sure that an optimum returned by local search is the **global optimum**.



Randomized Algorithms

- Adding random moves can fix some hill climbing problems
- Two main kinds of random move:
 - 1. Random restart: Start searching from a completely random new location
 - 2. Random step: Choose a random neighbour
- Stochastic random search: Add both kinds of random moves to hill climbing

Stochastic Local Search

Input: a constraint satisfaction problem; a *neighbours* function; a *score* function to maximize; a *stop_walk* criterion; a *random_step* criterion

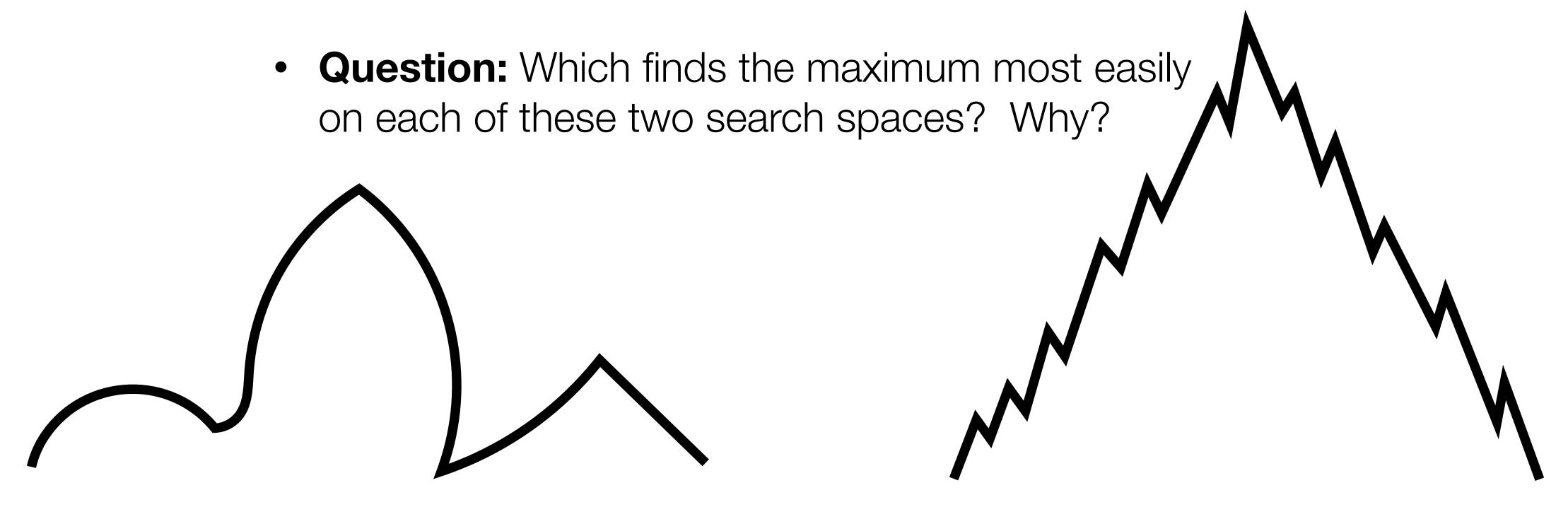
```
current := random assignment of values to variables
incumbent := current
repeat
  if incumbent is a satisfying assignment:
     return incumbent
  if stop_walk():
     current := new random assignment of values to variables
  else if random_step():
     current := a random element from neighbours(current)
  else:
     current := n from neighbours(current) with maximum score(n)
  if score(current) > score(incumbent):
     incumbent := current
until termination
```

Questions:

- Is stochastic local search complete?
 (Why?)
- 2. Is stochastic local search optimal?(Why?)

Two Examples

- Consider two partial algorithms:
 - 1. Hill climbing plus random restart
 - 2. Hill climbing plus random steps



Simulated Annealing

- Idea: Start out by searching pretty randomly, but become more directed as time goes on
 - Intuition: Move to a good neighbourhood quickly, then search intensively in that neighbourhood
- Maintain a "temperature" T
- Choose new nodes more randomly at higher temperatures;
 Gradually decrease the temperature (according to a cooling schedule)
- At each step:
 - Randomly choose a neighbour new
 - Always accept (i.e., assign to *current*) if *score*(*new*) > *score*(*current*)
 - Accept with probability exp[(score(new) score(current)) / T]

Summary

- For some problems, we only care about finding a **goal node**, not the actions we took to find it
- Local search: Look for goal states by iteratively moving from a current state to a neighbouring state
 - Hill climbing: Always move to the highest-score neighbour
 - Random step: Sometimes choose a random neighbour
 - Random restart: Sometimes start again from an entirely random state
 - Simulated annealing: Random moves start very random, become more greedy over time