
Heuristic Search

CMPUT 366: Intelligent Systems 
 

P&M §3.6

Lecture Outline

1. Recap & Logistics

2. Heuristics

3. A* Search

4. Comparing Heuristics

Sanction Policy
I have been instructed to announce the new sanction policy:

For first time offenders in plagiarism, the sanction will be zero in
the assignment with a discipline code of 8 annotated in the
transcript and Conduct Probation, which starts immediately and
ends at the end of the degree program. Under Conduct
Probation if a student is found to have violated the Code of
Student Behaviour a second time, the student will be
recommended for suspension.

Recap: Search Strategies
Depth First Breadth

First
Iterative

Deepening
Least Cost

First

Selection Newest Oldest Newest,
multiple Cheapest

Data
structure Stack Queue Stack,

counter
Priority
queue

Complete? Finite
graphs only Complete Complete Complete if

cost(p) > 𝜀
Space

complexity O(mb) O(bm) O(mb) O(bm)

Time
complexity O(bm) O(bm) O(mbm) ** O(bm)

Optimal? No No No Optimal

Bonus: Time Complexity of
Iterated Deepening Search

• Breadth-first search requires O(bm) time, because in the worst case it visits
every path once

• Iterative deepening search is worse, because it visits every path at least once,
and many paths multiple times. 
But how much worse?

Claim: Iterated deepening search has time complexity no worse than O(mbm) 
(i.e., m times worse than breadth first search)

1. Paths of length 1 are visited m times; paths of length 2 are visited m-1
times; ... ; paths of length m are visited 1 time.

2. In other words, every path is visited m times or fewer

Note: This is a very loose bound. See the text for a much tighter bound.

Domain Knowledge

• Domain-specific knowledge can help speed up search by
identifying promising directions to explore

• We will encode this knowledge in a function called a
heuristic function which estimates the cost to get from a
node to a goal node

• The search algorithms in this lecture take account of this
heuristic knowledge when selecting a path from the frontier

Heuristic Function
Definition: 
A heuristic function is a function h(n) that returns a non-
negative estimate of the cost of the cheapest path from n to a
goal node.

• For paths: h(<n1, n2, ..., nk>) = h(nk)

• Uses only readily-available information about a node  
(i.e., easy to compute)

• Problem-specific

Admissible Heuristic

Definition: 
A heuristic function is admissible if h(n) is always less than or
equal to the cost of the cheapest path from n to a goal node.

• i.e., h(n) is a lower bound on cost(<n, ..., g>) for any
goal node g

Example Heuristics

• Euclidean distance for DeliveryBot  
(ignores that it can't go through walls)

• Number of dirty rooms for VacuumBot  
(ignores the need to move between rooms)

• Points for chess pieces  
(ignores positional strength)

Constructing
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to
constraints encoded in the search graph

• How to construct an easier problem? Drop some constraints.

• This is called a relaxation of the original problem

• The cost of the optimal solution to the relaxation will always be
an admissible heuristic for the original problem (Why?)

• Neat trick: If you have two admissible heuristics h1 and h2, then
h3(n) = max(h1(n), h2(n)) is admissible too! (Why?) 

Simple Uses of Heuristics
• Heuristic depth first search: Add neighbours to the fringe in decreasing

order of their heuristic values, then run depth first search as usual

• Will explore most promising successors first, but

• Still explores all paths through a successor before considering other
successors

• Not complete, not optimal

• Greedy best first search: Select path from the frontier with the lowest
heuristic value

• Not guaranteed to work any better than breadth first search

A* Search
• A* search uses both path cost information and heuristic information to

select paths from the frontier

• Let f(p) = cost(p) + h(p)

• A* removes paths from the frontier with smallest f(p)

• When h is admissible,  
p*=<s, ..., n, ..., g> is a solution, and 
p=<s, ..., n> is a prefix of p*:

• f(p) ≤ cost(p*)

• Why?

start actual

cost(p)
n estimated goal

h(n)

f(p)

A* Search Algorithm
Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}  
while frontier is not empty: 
 select heuristic minimizing path <n1, n2, ..., nk> from frontier 
 remove <n1, n2, ..., nk> from frontier  
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier 
end while

Question:

What data structure for the
frontier implements this search
strategy?

i.e., f(<n1, n2, ..., nk>) ≤ f(p) 
for all other paths p ∈ frontier

A* Search Example: 
DeliveryBot

• Heuristic: Euclidean distance

• Question: What is f(b3)? f(109)?

• A* will spend a bit of time exploring paths in
the labs before trying to go around via o109

• At that point the heuristic starts helping
more

• Question: Does breadth-first search
explore paths in the lab too?

• Question: Does breadth-first search
explore any paths that A* does not?

State-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

26 23 21 24

27

12

1817

1513

6

0

4 11

1210

6

A* Theorem

Theorem: 
If there is a solution, A* using heuristic function h always returns
an optimal solution, if

1. The branching factor is finite,

2. All arc costs are greater than some 𝜀 > 0, and

3. h is an admissible heuristic

A* Theorem: 
Completeness

Proof part 1: A* is complete

• Since arc costs are larger than 𝜀, every path in the frontier will
eventually have cost larger than k, for any finite k

• So every path in the frontier will eventually have cost larger
than the cost of the optimal solution

• So the optimal solution will eventually be removed from the
frontier

A* Theorem: 
Optimality

Proof part 2: Optimality

• If path g is a solution, then f(g) is equal to cost(g) 
(Why?)

• If a path p leads to an optimal solution, and path g is
any solution, then f(p) ≤ f(g) (Why?)

• So no sub-optimal solution will be removed from the frontier
while a path that leads to an optimal solution is on the
frontier.

i.e., p=<s, n1, ..., nk>,

p* = <s, n1, ..., nk, nk+1, ..., z>,

and p* is optimal

Comparing Heuristics

• Suppose that we have two admissible heuristics, h1 and h2

• Suppose that for every node n, h2(n) ≥ h1(n)

Question: Which heuristic is better for search?

Dominating Heuristics
Definition: 
A heuristic h2 dominates a heuristic h1 if

1. , and

2.

Theorem: 
If h2 dominates h1, and both heuristics are admissible, then A* using
h2 will never remove more paths from the frontier than A* using h1.

Question:  
Which admissible heuristic dominates all other admissible heuristics?

∀n : h2(n) ≥ h1(n)

∃n : h2(n) > h1(n) .

A* Analysis
For a search graph with finite maximum branch factor b and 
finite maximum path length m...

1. What is the worst-case space complexity of A*?  
[A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

2. What is the worst-case time complexity of A*? 
[A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

Question: If A* has the same space and time complexity as
least cost first search, then what is its advantage?

Summary
• Domain knowledge can help speed up graph search

• Domain knowledge can be expressed by a heuristic function, which
estimates the cost of a path to the goal from a node

• A* considers both path cost and heuristic cost when selecting paths:  
f(p) = cost(p) + h(p)

• Admissible heuristics guarantee that A* will be optimal

• Admissible heuristics can be built from relaxations of the original
problem

• The more accurate the heuristic is, the fewer the paths A* will explore

