Heuristic Search

CMPUT 366: Intelligent Systems

P&M §3.6

Lecture Outline

- 1. Recap & Logistics
- 2. Heuristics
- 3. A* Search
- 4. Comparing Heuristics

Sanction Policy

I have been instructed to announce the new sanction policy:

For first time offenders in plagiarism, the sanction will be zero in the assignment with a discipline code of 8 annotated in the transcript and Conduct Probation, which starts immediately and ends at the end of the degree program. Under Conduct Probation if a student is found to have violated the Code of Student Behaviour a second time, the student will be recommended for suspension.

Recap: Search Strategies

Depth	FIRST

	Depth First	Breadth First	Iterative Deepening	Least Cost First
Selection	Newest	Oldest	Newest, multiple	Cheapest
Data structure	Stack	Queue	Stack, counter	Priority queue
Complete?	Finite graphs only	Complete	Complete	Complete if $cost(p) > \varepsilon$
Space complexity	O(mb)	O(b ^m)	O(mb)	O(b ^m)
Time complexity	O(b ^m)	O(b ^m)	O(mb ^m) **	O(b ^m)
Optimal?	No	No	No	Optimal

Bonus: Time Complexity of Iterated Deepening Search

- lacksquareevery path once
- lacksquareand many paths multiple times. But **how much** worse?

Claim: Iterated deepening search has time complexity no worse than **O(mb^m)** (i.e., *m* times worse than breadth first search)

- times; ...; paths of length *m* are visited 1 time.
- 2. In other words, every path is visited *m* times or fewer

Note: This is a very **loose bound**. See the text for a much tighter bound.

Breadth-first search requires $O(b^m)$ time, because in the worst case it visits

Iterative deepening search is **worse**, because it visits every path at least once,

1. Paths of length 1 are visited *m* times; paths of length 2 are visited *m*-1

- identifying promising directions to explore
- We will encode this knowledge in a function called a node to a goal node

Domain Knowledge

• Domain-specific knowledge can help speed up search by

heuristic function which estimates the cost to get from a

• The search algorithms in this lecture take account of this heuristic knowledge when **selecting** a path from the frontier

Heuristic Function

Definition:

A heuristic function is a function h(n) that returns a nongoal node.

- For paths: $h(\langle n_1, n_2, ..., n_k \rangle) = h(n_k)$
- Uses only readily-available information about a node (i.e., easy to compute)
- Problem-specific

negative estimate of the cost of the cheapest path from n to a

Admissible Heuristic

Definition:

A heuristic function is **admissible** if h(n) is always less than or equal to the cost of the cheapest path from n to a goal node.

i.e., h(n) is a lower be
 goal node g

i.e., h(n) is a lower bound on cost(<n, ..., g>) for any

Example Heuristics

- **Euclidean distance** for DeliveryBot (ignores that it can't go through walls)
- Number of dirty rooms for VacuumBot (ignores the need to move between rooms)
- **Points** for chess pieces (ignores positional strength)

Constructing Admissible Heuristics

- Search problems try to find a cost-minimizing path, subject to constraints encoded in the search graph
- How to construct an easier problem? Drop some constraints.
 - This is called a **relaxation** of the original problem
- The cost of the optimal solution to the relaxation will always be an admissible heuristic for the original problem (Why?)
- Neat trick: If you have two admissible heuristics h_1 and h_2 , then $h_3(n) = \max(h_1(n), h_2(n))$ is admissible too! (Why?)

Simple Uses of Heuristics

- Heuristic depth first search: Add neighbours to the fringe in decreasing order of their heuristic values, then run depth first search as usual
 - Will explore most promising successors first, but
 - Still explores all paths through a successor before considering other successors
 - Not complete, not optimal
- Greedy best first search: Select path from the frontier with the lowest heuristic value
 - Not guaranteed to work any better than breadth first search

A^*S

- select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
- A* removes paths from the frontier with smallest f(p)
- When *h* is **admissible**, *p**=<*s*, ..., *n*, ..., *g*> is a **solution**, and $p = \langle s, ..., n \rangle$ is a **prefix** of p^* :
 - $f(p) \leq \operatorname{cost}(p^*)$
 - Why?

	start $\xrightarrow{actual} n \xrightarrow{actual} g$			
Search	cost(p)	h(n)		
	f(p)			

• A* search uses **both** path cost information and heuristic information to

A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := $\{ \langle s \rangle \mid s \text{ is a start node} \}$ while frontier is not empty: **remove** $< n_1, n_2, ..., n_k >$ from *frontier* if $goal(n_k)$:

return < $n_1, n_2, ..., n_k$ > for each neighbour *n* of n_k : **add** $< n_1, n_2, ..., n_k, n >$ to frontier end while

i.e., $f(\langle n_1, n_2, ..., n_k \rangle) \leq f(p)$ for all other paths $p \in$ *frontier*

select heuristic minimizing path $< n_1, n_2, ..., n_k >$ from frontier

Question:

What **data structure** for the frontier implements this search strategy?

- Heuristic: **Euclidean distance**
- **Question:** What is f(b3)? f(109)?
- A* will spend a bit of time exploring paths in lacksquarethe labs before trying to go around via o109
- At that point the heuristic starts helping lacksquaremore
- **Question:** Does breadth-first search explore paths in the lab too?
- **Question:** Does breadth-first search explore any paths that A^{*} does not?

A* Theorem

Theorem:

If there is a solution, A* using heuristic function h always returns an **optimal** solution, if

- 1. The branching factor is finite,
- 2. All arc costs are greater than some $\varepsilon > 0$, and
- 3. *h* is an **admissible** heuristic

A* Theorem: Completeness

Proof part 1: A* is complete

- eventually have cost larger than k, for any finite k
- than the cost of the optimal solution
- frontier

• Since arc costs are larger than ε , every path in the frontier will

• So every path in the frontier will eventually have cost larger

• So the optimal solution will eventually be removed from the

A* Theorem: Optimality

Proof part 2: Optimality

- If path g is a **solution**, then f(g) is equal to cost(g)**(Why?**)
- If a path p leads to an optimal solution, and path g is any solution, then $f(p) \leq f(q)$ (Why?)
- frontier.

 So no sub-optimal solution will be removed from the frontier while a path that leads to an optimal solution is on the

Comparing Heuristics

- Suppose that we have two **admissible** heuristics, h_1 and h_2
- Suppose that for every node $n, h_2(n) \ge h_1(n)$

Question: Which heuristic is better for search?

Dominating Heuristics

Definition:

A heuristic h_2 dominates a heuristic h_1 if

1. $\forall n : h_2(n) \ge h_1(n)$, and

2. $\exists n : h_2(n) > h_1(n)$.

Theorem:

If h_2 dominates h_1 , and both heuristics are admissible, then A* using h_2 will never remove more paths from the frontier than A* using h_1 .

Question:

Which admissible heuristic dominates all other admissible heuristics?

A* Analysis

For a search graph with *finite* maximum branch factor b and *finite* maximum path length *m...*

- 1. What is the worst-case **space complexity** of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. What is the worst-case time complexity of A*? [A: O(m)] [B: O(mb)] $[C: O(b^m)]$ [D: it depends]

Question: If A* has the same space and time complexity as least cost first search, then what is its advantage?

Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- A* considers both path cost and heuristic cost when selecting paths:
 f(p) = cost(p) + h(p)
- Admissible heuristics guarantee that A* will be optimal
- Admissible heuristics can be built from relaxations of the original problem
- The more accurate the heuristic is, the fewer the paths A* will explore