Uninformed Search

CMPUT 366: Intelligent Systems



|_Ogistics

* NO LAB TODAY

* Assignment #1 released next week




Recap: Graph Search

* Many Al tasks can be represented as search problems

* A single generic graph search algorithm can then solve
them alll

* A search problem consists of states, actions, start states, a

successor function, a goal function, optionally a cost
function

» Solution quality can be represented by labelling arcs of the
search graph with costs



Recap: Generic Graph
Search Algorithm

paths on
start frontier 7‘
node ~ '\.

Input: a graph; a set of start nodes; a goal function %\ . 'g:‘
o

~;
frontier := { <S> | S is a start node} explored nodes N
while frontier is not empty: ‘.‘ g nexplored nodes

\/
select a path <n1, no, ..., nk> from frontier é

remove <n1, No, ..., N> from frontier
if goal(nk):
return <n1, no, ..., NK>
for each neighbour n of nk: expand
add <n1, no, ..., Nk, N> to frontier
end while

e \Which value Is selected from the frontier defines the search strategy



| ecture Outline

Logistics & Recap

Properties of Algorithms and Search Graphs

Depth First Search
Breadth First Search

terative Deepening Search

| east Cost First Search



Algorithm Properties

What properties of algorithms do we want to analyze”?

* A search algorithm is complete it it is guaranteed to find a solution within a
finite amount of time whenever a solution exists.

* The time complexity of a search algorithm is a measure of how much
time the algorithm will take to run, in the worst case.

* |n this section we measure by number of paths added to the frontier.

* The space complexity of a search algorithm is a measure of how much
space the algorithm will use, in the worst case.

* We measure by maximum number of paths in the frontier.



Search Graph Properties

What properties of the search graph do algorithmic properties
depend on”

* Forward branch factor: Maximum number of neighbours
Notation: b

* Maximum path length. (Could be infinite!)
Notation: m

 Presence of cycles

* [Length of the shortest path to a goal node



Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier 1= { <s> | s is a start node}

while frontier Is not empty:
select the newest path <n1, no, ..., nk> from frontier
remove <n1, N2, ..., N> from frontier

it goal(nk):
for each neighbour n of nk:
add <n1, nz, ..., Nk, N> to frontier What data structure for the
end while frontier implements this search

strategy?



Depth First Search -
0/.\0
Depth-first search always removes one of the longest paths from the frontier. ﬁ\
-

Example:
Frontier: [p1, p2, p3, p4]
successors(pi1) = {n1, N2, N3}
What happens?
1. Remove p1; test p1 for goal
2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to front of frontier

3. New frontier: [<p1,n1>, <,01,r72>,,02,p3,p4]

4, p2 is selected only after all paths starting with p1 have been explored

Question: \When is <p1,n3> selected?



Depth First Search Analysis %

A
—Or a search graph with maximum branch factor b ana /I\‘
maximum path length m...

1. What is the worst-case time complexity”
e [A: Om)] [B: Oimb)] [C: O™)] [D: it depends]
2. When is depth-first search complete”?

3. What is the worst-case space complexity?

¢ [A:O(m)] [B: Omb)] [C: Obm)] [D: it depends]



When to Use /N

Depth First Search 0

 Memory is restricted

e All solutions at same approximate depth

* QOrder in which neighbours are searched can be tuned to find solution quickly
* When is depth-first search inappropriate”

* Infinite paths exist

 When there are likely to be shallow solutions

e Especially if some other solutions are very deep



Breadth First Search

Input: a graph; a set of start nodes; a goal function

frontier 1= { <s> | s is a start node}

while frontier Is not empty:
select the oldest path <n1, no, ..., nk> from frontier
remove <ni, No, ..., N> from frontier

it goal(nk):
for each neighbour n of nk:
add <n1, nz, ..., Nk, N> to frontier What data structure for the
end while frontier implements this search

strategy?



Breadth First Search 1y

Breadth-first search always removes one of the shortest paths from the frontier.

Example:
Frontier: [p1, p2, P3, P4
successors(p1) = {n1, N2, N3}

What happens?
1. Remove p1; test p1 for goal
2. Add {<p1,n1>, <p1,n2>, <p1,n3>} to end of frontier:
3. New frontier: [p2 p3, pa, <p1,n1>, <P1,N2>, <P1,N3> ]

4. p2 IS selected next



Breadth First Search Analysis /&N

-Or a search graph with maximum branch factor b and
maximum path length m...

1. What is the worst-case time complexity”
e [A: OM)] [B: Omb)| [C: Obm)] [D: it depends]
2. When is breadth-first search complete”

3. What is the worst-case space complexity?

¢ [A:O(m)] [B: Omb)] [C: Obm)] [D: it depends]



VWhen to Use /
Breadth First Search AAN

 When is breadth-first search appropriate?
* \When there might be infinite paths
 \When there are likely to be shallow solutions, or
 \When we want to guarantee a solution with fewest arcs
 \When is breadth-first search inappropriate?
» |[arge branching factor
e All solutions located deep In the tree

« Memory is restricted



Comparing DFS vs. BFS

Depth-first Breadth-first

Only for finite

l,
Complete* graphs Complete
Space .
complexity O(mb) Ob™)
Time - -
complexity o) ObT)

 (Can we get the space benefits of depth-first search without giving up
completeness?

* Run depth-first search to a maximum depth
e then try again with a larger maximum

* until either goal found or graph completely searched



terative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to oo:
Perform depth-first search to a maximum depth max_depth
end for




terative Deepening Search

Input: a graph; a set of start nodes; a goal function

more_nodes = True
while more_nodes:
frontier := { <s> | s is a start node}
for max_depth from 1 to oo:
more_nodes = False
while frontier is not empty:
select the newest path <n1, no, ..., nk> from frontier
remove <n1, No, ..., N> from frontier
if goal(nk):
return <n+, no, ..., Nk>
If K < max_depth:
for each neighbour n of nk:
add <n1, no, ..., Nk, N> to frontier
else If nx has neighbours:
more_nodes = True
end for
end while
end while




terative Deepening Search
Analysis

-Or a search graph with maximum branch factor b and
maximum path length m...

1. What is the worst-case time complexity”
e [A: Om)] [B: Omb)] [C: O™)] [D: it depends]
2. When is iterative deepening search complete?

3. What is the worst-case space complexity?

¢ [A:O(m)] [B: Omb)] [C: Obm)] [D: it depends]



When to Use
terative Deepening Search

* \When is iterative deepening search appropriate”
 Memory is limited, and
o Both deep and shallow solutions may exist
e Or we prefer shallow ones

* [ree may contain infinite paths



Optimality

Definition:
An algorithm is optimal If it Is guaranteed to return an optimal
(.e., minimal-cost) solution first.

Question: \Which of the three algorithms presented so far is
optimal? Why"?



| east Cost First Search

* None of the algorithms described so far is guided by arc

costs

e BFS and IDS are |

mplic

can be the same

‘or un

tly g

iform

uided by path length, which

-CcOSst arcs

* T[hey return a path to a goal node when they happen to
blunder across one, but it may not be the optimal one

 Least Cost First Search is a search strategy that is guided

Oy arc costs



| east Cost First Search

Input: a graph; a set of start nodes; a goal function
l.e., cost(<ni, no, ..., Nk>) < cost(p)
frontier 1= { <s> | s is a start node} for all other paths p e frontier

while frontier is not empty:
select the cheapest path <n1, no, ..., nk> from frontier
remove <n+, N2, ..., N> from frontier

it goal(nk):
for each neighbour n of nk:
add <n1, Nz, ..., Nk N> to frontier What data structure for the
end while frontier implements this search

strategy?



| east Cost First Search
Analysis

* |east Cost First Search is complete and optimal if there is € > 0 with
cost(<n1,n2>) > € for every arc <ni,nz>:

1. Suppose <n1,ne,...,Nx> 1s the optimal solution

2. Suppose that p is any non-optimal solution
S0, cost(p) > <n1,ne,...,Nk>

3. Forevery 1 =¢ <k, cost(<ni,nz,...,n>) < cost(p)
4. So p will never be removed from the frontier before <n1,no,...,Nk>

 \What is the worst-case space complexity of Least Cost First Search?
[A: Oim)] [B: Omb)] [C: Obm)] [D: it depends]

 \When does Least Cost First Search have to expand every node of the graph?



Summary

* Different search strategies have different properties and behaviour

 Depth first search is space-efficient but not always complete or time-
efficient

 Breadth first search is complete and always finds the shortest path to a
goal, but is not space-efficient

e |terative deepening search can provide the benefits of both, at the
expense of some time-efficiency

» All three strategies must potentially expand every node, and are not
guaranteed to return an optimal solution

 |east cost first is essentially breadth-first search with an optimality guarantee



