Uninformed Search

CMPUT 366: Intelligent Systems

P&M §3.5

Logistics

- NO LAB TODAY
- Assignment #1 released next week

Recap: Graph Search

- Many Al tasks can be represented as search problems
 - A single generic graph search algorithm can then solve them all!
- A search problem consists of states, actions, start states, a successor function, a goal function, optionally a cost function
- Solution quality can be represented by labelling arcs of the search graph with costs

Recap: Generic Graph Search Algorithm

Input: a graph; a set of start nodes; a goal function

```
frontier := { <s> | s is a start node}

while frontier is not empty:

select a path <n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>> from frontier

remove <n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>> from frontier

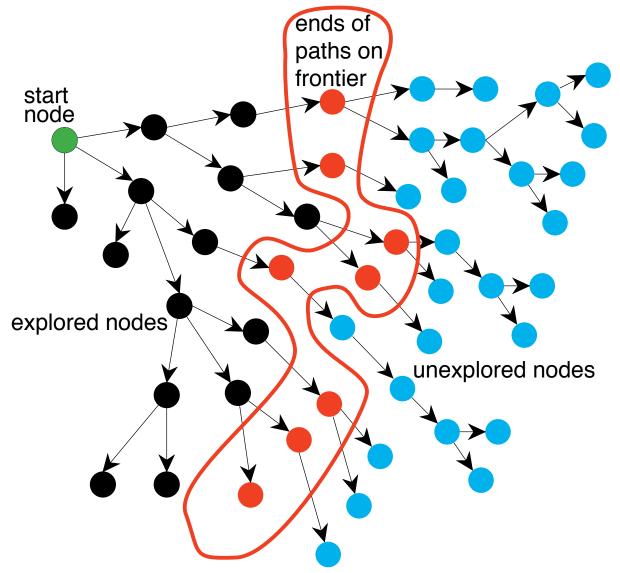
if goal(n_k):

return <n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>>

for each neighbour n of n<sub>k</sub>: (i.e., expand node n<sub>k</sub>)

add <n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>, n> to frontier

end while
```



Which value is selected from the frontier defines the search strategy

Lecture Outline

- 1. Logistics & Recap
- 2. Properties of Algorithms and Search Graphs
- 3. Depth First Search
- 4. Breadth First Search
- 5. Iterative Deepening Search
- 6. Least Cost First Search

Algorithm Properties

What properties of algorithms do we want to analyze?

- A search algorithm is **complete** if it is guaranteed to find a solution within a finite amount of time whenever a solution exists.
- The time complexity of a search algorithm is a measure of how much time the algorithm will take to run, in the worst case.
 - In this section we measure by number of paths added to the frontier.
- The space complexity of a search algorithm is a measure of how much space the algorithm will use, in the worst case.
 - We measure by maximum number of paths in the frontier.

Search Graph Properties

What properties of the search graph do algorithmic properties depend on?

- Forward branch factor: Maximum number of neighbours Notation: *b*
- Maximum path length. (Could be infinite!)
 Notation: m
- Presence of cycles
- Length of the shortest path to a goal node

Depth First Search

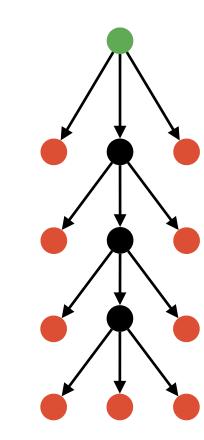
Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
while frontier is not empty:
   select the newest path \langle n_1, n_2, ..., n_k \rangle from frontier
   remove \langle n_1, n_2, ..., n_k \rangle from frontier
   if goal(n_k):
       return < n_1, n_2, ..., n_k >
   for each neighbour n of n_k:
       add \langle n_1, n_2, ..., n_k, n \rangle to frontier
end while
```

Question:

What **data structure** for the frontier implements this search strategy?

Depth First Search



Depth-first search always removes one of the longest paths from the frontier.

Example:

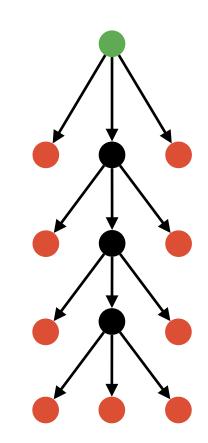
Frontier: $[p_1, p_2, p_3, p_4]$ successors $(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **front** of frontier
- 3. New frontier: $[<p_1,n_1>, <p_1,n_2>, <p_1,n_3>, p_2,p_3,p_4]$
- 4. p2 is selected only after all paths starting with p1 have been explored

Question: When is $\langle p_1, n_3 \rangle$ selected?

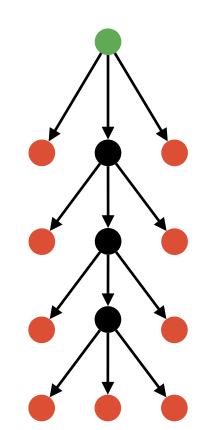
Depth First Search Analysis



For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is depth-first search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use Depth First Search



- When is depth-first search appropriate?
 - Memory is restricted
 - All solutions at same approximate depth
 - Order in which neighbours are searched can be tuned to find solution quickly
- When is depth-first search inappropriate?
 - Infinite paths exist
 - When there are likely to be shallow solutions
 - Especially if some other solutions are very deep

Breadth First Search

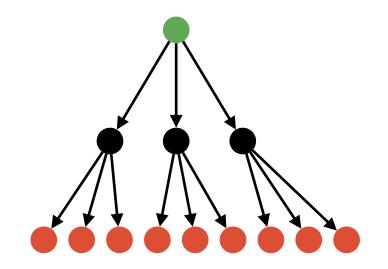
Input: a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
while frontier is not empty:
   select the oldest path \langle n_1, n_2, ..., n_k \rangle from frontier
   remove \langle n_1, n_2, ..., n_k \rangle from frontier
   if goal(n_k):
       return < n_1, n_2, ..., n_k >
   for each neighbour n of n_k:
       add \langle n_1, n_2, ..., n_k, n \rangle to frontier
end while
```

Question:

What **data structure** for the frontier implements this search strategy?

Breadth First Search



Breadth-first search always removes one of the shortest paths from the frontier.

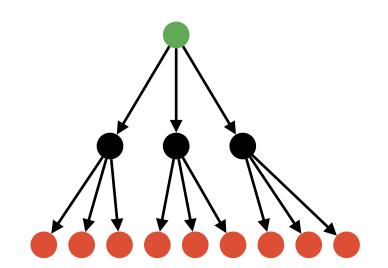
Example:

Frontier: $[p_1, p_2, p_3, p_4]$ successors $(p_1) = \{n_1, n_2, n_3\}$

What happens?

- 1. Remove p_1 ; test p_1 for goal
- 2. Add $\{\langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle\}$ to **end** of frontier:
- 3. New frontier: $[p_2, p_3, p_4, \langle p_1, n_1 \rangle, \langle p_1, n_2 \rangle, \langle p_1, n_3 \rangle]$
- 4. p₂ is selected **next**

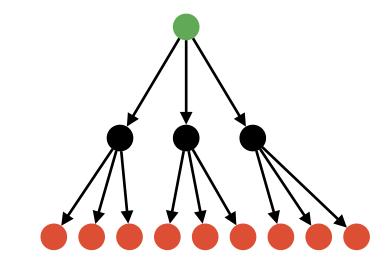
Breadth First Search Analysis



For a search graph with maximum branch factor b and maximum path length m...

- What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is breadth-first search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use Breadth First Search



- When is breadth-first search appropriate?
 - When there might be infinite paths
 - When there are likely to be shallow solutions, or
 - When we want to guarantee a solution with fewest arcs
- When is breadth-first search inappropriate?
 - Large branching factor
 - All solutions located deep in the tree
 - Memory is restricted

Comparing DFS vs. BFS

	Depth-first	Breadth-first
Complete?	Only for finite graphs	Complete
Space complexity	O(mb)	$O(b^m)$
Time complexity	<i>O</i> (<i>b</i> ^{<i>m</i>})	$O(b^m)$

- Can we get the space benefits of depth-first search without giving up completeness?
- Run depth-first search to a maximum depth
 - then try again with a larger maximum
 - until either goal found or graph completely searched

Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to ∞:

Perform **depth-first search** to a maximum depth *max_depth* **end for**

Iterative Deepening Search

Input: a *graph*; a set of *start nodes*; a *goal* function

```
more_nodes := True
while more_nodes:
   frontier := \{ \langle s \rangle \mid s \text{ is a start node} \}
   for max_depth from 1 to ∞:
      more_nodes := False
      while frontier is not empty:
          select the newest path \langle n_1, n_2, ..., n_k \rangle from frontier
          remove \langle n_1, n_2, ..., n_k \rangle from frontier
          if goal(n_k):
             return <n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>>
          if k < max\_depth:
             for each neighbour n of n_k:
                add \langle n_1, n_2, ..., n_k, n \rangle to frontier
          else if n_k has neighbours:
             more_nodes := True
      end for
   end while
end while
```

Iterative Deepening Search Analysis

For a search graph with maximum branch factor b and maximum path length m...

- 1. What is the worst-case time complexity?
 - [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. When is iterative deepening search complete?
- 3. What is the worst-case space complexity?
 - [A: O(m)] [B: O(mb)] [C: O(bm)] [D: it depends]

When to Use Iterative Deepening Search

- When is iterative deepening search appropriate?
 - Memory is limited, and
 - Both deep and shallow solutions may exist
 - or we prefer shallow ones
 - Tree may contain infinite paths

Optimality

Definition:

An algorithm is **optimal** if it is guaranteed to return an optimal (i.e., minimal-cost) solution **first**.

Question: Which of the three algorithms presented so far is optimal? Why?

Least Cost First Search

- None of the algorithms described so far is guided by arc costs
 - BFS and IDS are implicitly guided by path length, which can be the same for uniform-cost arcs
- They return a path to a goal node when they happen to blunder across one, but it may not be the optimal one
- Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search

Input: a graph; a set of start nodes; a goal function

end while

```
frontier := { \langle s \rangle | s is a start node} i.e., cost(\langle n_1, n_2, ..., n_k \rangle) \le cost(p) for all other paths p \in frontier while frontier is not empty:

select the cheapest path \langle n_1, n_2, ..., n_k \rangle from frontier

remove \langle n_1, n_2, ..., n_k \rangle from frontier

if goal(n_k):

return \langle n_1, n_2, ..., n_k \rangle Question:

for each neighbour n of n_k:

add \langle n_1, n_2, ..., n_k, n \rangle to frontier

What data structure for the
```

frontier implements this search

strategy?

Least Cost First Search Analysis

- Least Cost First Search is **complete** and **optimal** if there is $\varepsilon > 0$ with $\cos(\langle n_1, n_2 \rangle) > \varepsilon$ for every arc $\langle n_1, n_2 \rangle$:
 - 1. Suppose $\langle n_1, n_2, ..., n_k \rangle$ is the optimal solution
 - 2. Suppose that p is any non-optimal solution So, $cost(p) > \langle n_1, n_2, ..., n_k \rangle$
 - 3. For every $1 \le \ell \le k$, $cost(\langle n_1, n_2, ..., n_\ell \rangle) < cost(p)$
 - 4. So p will never be removed from the frontier before $\langle n_1, n_2, ..., n_k \rangle$
- What is the worst-case **space complexity** of Least Cost First Search? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- When does Least Cost First Search have to expand every node of the graph?

Summary

- Different search strategies have different properties and behaviour
 - Depth first search is space-efficient but not always complete or timeefficient
 - Breadth first search is complete and always finds the shortest path to a goal, but is not space-efficient
 - Iterative deepening search can provide the benefits of both, at the expense of some time-efficiency
 - All three strategies must potentially expand every node, and are not guaranteed to return an optimal solution
- Least cost first is essentially breadth-first search with an optimality guarantee