
Graph Search

CMPUT 366: Intelligent Systems 
 

P&M §3.1-3.4

Recap: Dimensions
• Static vs. sequential action

• Goals vs. complex preferences

• Episodic vs. continuing

• State representation scheme

• Perfect vs. bounded rationality

Different dimensions interact; you can't just set them arbitrarily

1. Uncertainty

2. Interaction

3. Number of agents

Lecture Outline

1. Recap

2. Search Problems

3. Graph Search

Search
• It is often easier to recognize a solution than to compute it

• For fully-observable, deterministic, offline, single-agent problems,  
search exploits this property!

• Agent searches internal representation to find solution

• All computation is purely internal to the agent. Environment is fully
deterministic, so no need for observations, just remember actions

• Formally represent as searching a directed graph for a path to a goal state

• Why might this be a good idea?

• Because it is very general. Many AI problems can be represented in this
form, and the same algorithms can solve them all.

State Space
• A state describes all the relevant information about a possible

configuration of the environment

• Markov assumption: How the environment got to a given
configuration doesn't matter, just the current configuration.

• A state is an assignment of values to one or more variables

• A single variable called "state"

• x and y coordinates, temperature, battery charge, etc.

• Actions change the environment from one state to another

Search Problem
Definition: Search problem (textbook: state-space problem)

• A set of states

• A start state (or set of start states)

• A set of actions available at each state

• A successor function that maps from a state to a set of next states

• The textbook calls this an action function

• A goal function that returns true when a state satisfies the goal

Example: DeliveryBot
Domain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

DeliveryBot wants to get from outside room 103 to inside room 123

DeliveryBot as a 
Search ProblemDomain for Delivery Robot

lab4

stairs

lab1 lab2

lab3

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

c�D. Poole and A. Mackworth 2016 Artificial Intelligence, Lecture 1.3, Page 2

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

States {r131, o131, 
 r129, o129, ...}

Actions {go-north, go-south,

go-east, go-west}

Start state o103

Successor function
succ(r101) = {r101, o101},

succ(o101) = {o101, lab1, r101,o105, ts},

...

Goal function goal(state): (state == r123)

Example: VacuumBot

• Two rooms, one cleaning robot

• Each room can be clean or dirty

• Robot has two actions:

• clean: makes the room the robot is in clean

• move: moves to the other room

Questions:

1. How many states are there?

2. How many goal states?

Solving Search Problems,
informally

• Consider each start state

• Consider every state that can be reached from some state
that has been previously considered

• Stop when you encounter a goal state

Directed Graphs
• A directed graph is a pair G=(N,A)

• N is a set of nodes

• A is a set of ordered pairs called arcs

• Node n2 is a neighbour of n1 if there is an arc from n1 to n2

• i.e., <n1,n2> ∈ A

• A path is a sequence of nodes <n1, n2, ..., nk> with <ni-1,ni> ∈ A

• A solution is a path <n1, n2, ..., nk> from a start node to a goal node

Search Graph

We can represent any state space problem as a search graph:

1. Nodes are the states

2. Neighbours are the successors of a state

• i.e., add one arc from state s to each of s's successors

3. Optional: Label each arc with the action that leads to the
successor state

DeliveryBot: 
State Space GraphState-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

Generic Graph Search
Algorithm

• Given a graph, start nodes, and goal, incrementally
explore paths from the start nodes

• Maintain a frontier of paths that have been explored

• As search proceeds, the frontier expands into the
unexplored nodes until a goal is encountered.

• The way the frontier is expanded defines the search
strategy

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 19 14 / 17

Generic Graph Search
Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node} 
while frontier is not empty:  
 select and remove a path <n1, n2, ..., nk> from frontier 
 if goal(nk): 
 return <n1, n2, ..., nk> 
 for each neighbour n of nk: 
 add <n1, n2, ..., nk, n> to frontier  
end while

• Can continue the procedure after algorithm returns

• Which value is selected from the frontier defines the search strategy

Search Problem with Costs

What if solutions have differing qualities?

• Add costs to each arc: cost(<ni-1,ni>)

• Cost of a solution is the sum of the arc costs:  
 

• An optimal solution is one with the lowest cost

Questions:

1. Is this scheme sufficiently 
general?

2. What if we only care about
the number of actions that the
agent takes?

cost (⟨n0, n1, …, nk⟩) =
k

∑
i=1

cost (⟨ni−1, ni⟩)

DeliveryBot with CostsState-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 5 5 / 17

Summary
• Many AI tasks can be represented as search problems

• A single generic graph search algorithm can then solve
them all!

• A search problem consists of states, actions, start states, a
successor function, a goal function, optionally a cost
function

• Solution quality can be represented by labelling arcs of the
search graph with costs

