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Recap: Dimensions
• Static vs. sequential action 

• Goals vs. complex preferences 

• Episodic vs. continuing 

• State representation scheme 

• Perfect vs. bounded rationality 

Different dimensions interact; you can't just set them arbitrarily

1. Uncertainty 

2. Interaction 

3. Number of agents
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Search
• It is often easier to recognize a solution than to compute it 

• For fully-observable, deterministic, offline, single-agent problems,  
search exploits this property! 

• Agent searches internal representation to find solution 

• All computation is purely internal to the agent.  Environment is fully 
deterministic, so no need for observations, just remember actions 

• Formally represent as searching a directed graph for a path to a goal state 

• Why might this be a good idea? 

• Because it is very general.  Many AI problems can be represented in this 
form, and the same algorithms can solve them all.



State Space
• A state describes all the relevant information about a possible 

configuration of the environment 

• Markov assumption: How the environment got to a given 
configuration doesn't matter, just the current configuration. 

• A state is an assignment of values to one or more variables 

• A single variable called "state" 

• x and y coordinates, temperature, battery charge, etc. 

• Actions change the environment from one state to another



Search Problem
Definition: Search problem  (textbook: state-space problem) 

• A set of states 

• A start state (or set of start states) 

• A set of actions available at each state 

• A successor function that maps from a state to a set of next states 

• The textbook calls this an action function 

• A goal function that returns true when a state satisfies the goal



Example: DeliveryBot
Domain for Delivery Robot
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DeliveryBot wants to get from outside room 103 to inside room 123



DeliveryBot as a 
Search ProblemDomain for Delivery Robot
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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States {r131, o131, 
 r129, o129, ...}

Actions {go-north, go-south,

go-east, go-west}

Start state o103

Successor function
succ(r101) = {r101, o101},

succ(o101) = {o101, lab1, r101,o105, ts},

...

Goal function goal(state): (state == r123)



Example: VacuumBot

• Two rooms, one cleaning robot 

• Each room can be clean or dirty 

• Robot has two actions: 

• clean: makes the room the robot is in clean 

• move: moves to the other room

Questions: 

1. How many states are there? 

2. How many goal states?



Solving Search Problems, 
informally

• Consider each start state 

• Consider every state that can be reached from some state 
that has been previously considered 

• Stop when you encounter a goal state



Directed Graphs
• A directed graph is a pair G=(N,A) 

• N is a set of nodes 

• A is a set of ordered pairs called arcs 

• Node n2 is a neighbour of n1 if there is an arc from n1 to n2 

• i.e., <n1,n2> ∈ A 

• A path is a sequence of nodes <n1, n2, ..., nk> with <ni-1,ni> ∈ A 

• A solution is a path <n1, n2, ..., nk> from a start node to a goal node 



Search Graph

We can represent any state space problem as a search graph: 

1. Nodes are the states 

2. Neighbours are the successors of a state 

• i.e., add one arc from state s to each of s's successors 

3. Optional: Label each arc with the action that leads to the 
successor state



DeliveryBot: 
State Space GraphState-Space Graph for the Delivery Robot
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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Generic Graph Search 
Algorithm

• Given a graph, start nodes, and goal, incrementally 
explore paths from the start nodes 

• Maintain a frontier of paths that have been explored 

• As search proceeds, the frontier expands into the 
unexplored nodes until a goal is encountered. 

• The way the frontier is expanded defines the search 
strategy

Problem Solving by Graph Searching

ends of 
paths on 
frontier

explored nodes

unexplored nodes

start
node
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Generic Graph Search 
Algorithm

Input: a graph; a set of start nodes; a goal function 

frontier := { <s> | s is a start node} 
while frontier is not empty:  
    select and remove a path <n1, n2, ..., nk> from frontier 
    if goal(nk): 
        return <n1, n2, ..., nk> 
    for each neighbour n of nk: 
        add <n1, n2, ..., nk, n> to frontier  
end while 

• Can continue the procedure after algorithm returns 

• Which value is selected from the frontier defines the search strategy



Search Problem with Costs

What if solutions have differing qualities? 

• Add costs to each arc: cost(<ni-1,ni>) 

• Cost of a solution is the sum of the arc costs:  
 

• An optimal solution is one with the lowest cost

Questions: 

1. Is this scheme sufficiently 
general? 

2. What if we only care about 
the number of actions that the 
agent takes? 

cost (⟨n0, n1, …, nk⟩) =
k

∑
i=1

cost (⟨ni−1, ni⟩)



DeliveryBot with CostsState-Space Graph for the Delivery Robot
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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Summary
• Many AI tasks can be represented as search problems 

• A single generic graph search algorithm can then solve 
them all! 

• A search problem consists of states, actions, start states, a 
successor function, a goal function, optionally a cost 
function 

• Solution quality can be represented by labelling arcs of the 
search graph with costs


